
Symbolic execution as search, and
the rise of solvers

Search and SMT
• Symbolic execution is appealingly simple and

useful, but computationally expensive!

• We will see how the effective use of symbolic
execution boils down to a kind of search!

• And also take a moment to see how its feasibility at all
has been aided by the rise of SMT solvers

Path explosion
• Usually can’t run symbolic execution to exhaustion
• Exponential in branching structure

!

!

!

!

- Ex: 3 variables, 8 program paths
• Loops on symbolic variables even worse

!

!

!

!

- Potentially 2^31 paths through loop!

1. int a = α, b = β, c = γ; // symbolic!
2. if (a) ... else ...;!
3. if (b) ... else ...;!
4. if (c) ... else ...;

1. int a = α; // symbolic!
2. while (a) do ...;!
3. …

Compared to static analysis
• Stepping back: Here is a benefit of static analysis
• Static analysis will actually terminate even when

considering all possible program runs

• It does this by approximating multiple loop
executions, or branch conditions
• Essentially assumes all branches, and any number of

loop iterations, are feasible

• But can lead to false alarms, of course

Basic (symbolic) search
• Simplest ideas: algorithms 101
• Depth-first search (DFS) — worklist = stack!
• Breadth-first search (BFS) — worklist = queue

• Potential drawbacks
• Not guided by any higher-level knowledge

- Probably a bad sign
• DFS could easily get stuck in one part of the program

- E.g., it could keep going around a loop over and over again
• Of these two, BFS is a better choice

- But more intrusive to implement (can’t easily be concolic)

Search strategies
• Need to prioritize search
• Try to steer search towards paths more likely to contain

assertion failures
• Only run for a certain length of time

- So if we don’t find a bug/vulnerability within time budget, too bad

• Think of program execution as a DAG!
• Nodes = program states
• Edge(n1,n2) = can transition from state n1 to state n2

• We need a kind of graph exploration algorithm!
• At each step, pick among all possible paths

Randomness
• We don’t know a priori which paths to take, so adding

some randomness seems like a good idea
• Idea 1: pick next path to explore uniformly at random

(Random Path, or RP)
• Idea 2: randomly restart search if haven’t hit anything

interesting in a while
• Idea 3: choose among equal priority paths at random

- All of these are good ideas, and randomness is very effective

• One drawback of randomness: reproducibility
• Probably good to use pseudo-randomness based on

seed, and then record which seed is picked
- Or bugs may disappear (or reappear) on later runs

Coverage-guided heuristics
• Idea: Try to visit statements we haven’t seen before

• Approach
• Score of statement = # times it’s been seen
• Pick next statement to explore that has lowest score

• Why might this work?
• Errors are often in hard-to-reach parts of the program
• This strategy tries to reach everywhere.

• Why might this not work?
• Maybe never be able to get to a statement if proper

precondition not set up

Generational search
• Hybrid of BFS and coverage-guided
• Generation 0: pick one program at random, run to

completion
• Generation 1: take paths from gen 0; negate one branch

condition on a path to yield a new path prefix; find a
solution for that prefix; then take the resulting path

- Semi-randomly assigns to any variables not constrained by the prefix
• Generation n: similar, but branching off gen n-1

• Also uses a coverage heuristic to pick priority

Combined search
• Run multiple searches at the same time
• Alternate between them; e.g., Fitnext

• Idea: no one-size-fits-all solution
• Depends on conditions needed to exhibit bug
• So will be as good as “best” solution, within a constant

factor for wasting time with other algorithms
• Could potentially use different algorithms to reach

different parts of the program

SMT solver performance
• SAT solvers are at core of SMT solvers
• In theory, could reduce all SMT queries to SAT queries
• In practice, SMT-level optimizations are critical

• Some example extensions/improvements
• Simple identities (x + 0 = x, x * 0 = 0)
• Theory of arrays (read(x, write(42, x, A)) = 42)

- 42 = array index, A = array, x = element
• Caching (memoize solver queries)
• Remove useless variables

- E.g., if trying to show path feasible, only the part of the path condition
related to variables in guard are important

Popular SMT solvers
• Z3 - developed at Microsoft Research
• http://z3.codeplex.com/

• Yices - developed at SRI
• http://yices.csl.sri.com/

• STP - developed by Vijay Ganesh, now @ Waterloo
• https://sites.google.com/site/stpfastprover/

• CVC3 - developed primarily at NYU
• http://www.cs.nyu.edu/acsys/cvc3/

But: Path-based search limited

• This program has 2100 possible execution paths.

• Hard to find the bug:
• (100 75) ≈ 278 paths reach buggy line of code
• Pr(finding bug) = 278 / 2100 = 2-22

int counter = 0, values = 0;!
for (i = 0; i<100; i++) {!
 if (input[i] == ‘B’) {!
 counter++;!
 values += 2;!
 }!
}!
assert(counter != 75);

Symbolic execution systems

Resurgence
• Two key systems that triggered revival of this topic:

• DART — Godefroid and Sen, PLDI 2005
• Godefroid = model checking, formal systems

background

• EXE — Cadar, Ganesh, Pawlowski, Dill, and Engler,
CCS 2006
• Ganesh and Dill = SMT solver called STP (used in

implementation), Cadar and Engler = systems

• Now on to next-generation systems

SAGE
• Concolic executor developed at Microsoft Research!
• Grew out of Godefroid’s work on DART
• Uses generational search

• Primarily targets bugs in file parsers!
• E.g., JPEG, DOCX, PPT, etc
• Good fit for concolic execution

- Likely to terminate
- Just input/output behavior

SAGE Impact
• Used on production software at MS. Since 2007:
• 500+ machine years (in largest fuzzing lab in the world)

- Large cluster of machines continually running SAGE
• 3.4 Billion+ constraints (largest SMT solver usage ever!)
• 100s of apps, 100s of bugs (missed by everything else…)

- Ex: 1/3 of all Win7 WEX security bugs found by SAGE
• Bug fixes shipped quietly to 1 Billion+ PCs
• Millions of dollars saved (for Microsoft and the world)
• SAGE is now used daily in Windows, Office, etc.

http://research.microsoft.com/en-us/um/people/pg/public_psfiles/SAGE-in-1slide-for-PLDI2013.pdf

KLEE
• Symbolically executes LLVM bitcode!
• LLVM compiles source file to .bc file
• KLEE runs the .bc file
• Grew out of work on EXE

• Works in the style of our basic symbolic executor
• Uses fork() to manage multiple states
• Employs a variety of search strategies

- Primarily random path + coverage-guided!
• Mocks up the environment to deal with system calls, file

accesses, etc.

• Freely available with LLVM distribution

KLEE: Coverage for Coreutils

−100%

−50%

0%

50%

100%

k
l
e
e

vs
.

M
an

u
al

(E
L
O

C
%

)
k
l
e
e

vs
.

M
an

u
al

(E
L
O

C
%

)

1 10 25 50 75

Figure 6: Relative coverage difference between KLEE and
the COREUTILS manual test suite, computed by subtracting
the executable lines of code covered by manual tests (Lman)
from KLEE tests (Lklee) and dividing by the total possible:
(Lklee − Lman)/Ltotal. Higher bars are better for KLEE,
which beats manual testing on all but 9 applications, often
significantly.

5.2.2 Comparison against developer test suites

Each utility in COREUTILS comes with an extensive
manually-written test suite extended each time a new bug
fix or extra feature is added. 7 As Table 2 shows, KLEE
beats developer tests handily on all aggregate measures:
overall total line coverage (84.5% versus 67.7%), aver-
age coverage per tool (90.9% versus 68.4%) and median
coverage per tool (94.7% versus 72.5%). At a more de-
tailed level, KLEE gets 100% coverage on 16 tools and
over 90% coverage on 56 while the developer tests get
100% on a single utility (true) and reach over 90% on
only 7. Finally, the developers tests get below 60% cov-
erage on 24 tools while KLEE always achieves over 60%.
In total, an 89 hour run of KLEE (about one hour per ap-
plication) exceeds the coverage of a test suite built over
a period of fifteen years by 16.8%!
Figure 6 gives a relative view of KLEE versus devel-

oper tests by subtracting the lines hit by manual testing
from those hit by KLEE and dividing this by the total pos-
sible. A bar above zero indicates that KLEE beat the man-
ual test (and by how much); a bar below shows the oppo-
site. KLEE beats manual testing, often significantly, on
the vast majority of the applications.
To guard against hidden bias in line coverage, we

also compared the taken branch coverage (as reported by
gcov) of the manual and KLEE test suites. While the
absolute coverage for both test suites decreases, KLEE’s
relative improvement over the developers’ tests remains:

7We ran the test suite using the commands: env RUN EXPENSIVE
TESTS=YES RUN VERY EXPENSIVE TESTS=YES make
check and make check-root (as root). A small number of tests
(14 out of 393) which require special configuration were not run; from
manual inspection we do not expect these to have a significant impact
on our results.

paste -d\\ abcdefghijklmnopqrstuvwxyz
pr -e t2.txt
tac -r t3.txt t3.txt
mkdir -Z a b
mkfifo -Z a b
mknod -Z a b p
md5sum -c t1.txt
ptx -F\\ abcdefghijklmnopqrstuvwxyz
ptx x t4.txt
seq -f %0 1

t1.txt: "\t \tMD5("
t2.txt: "\b\b\b\b\b\b\b\t"
t3.txt: "\n"
t4.txt: "a"

Figure 7: KLEE-generated command lines and inputs (modi-
fied for readability) that cause program crashes in COREUTILS
version 6.10 when run on Fedora Core 7 with SELinux on a
Pentium machine.

KLEE achieves 76.9% overall branch coverage, while the
developers’ tests get only 56.5%.
Finally, it is important to note that although KLEE’s

runs significantly beat the developers’ tests in terms of
coverage, KLEE only checks for low-level errors and vi-
olations of user-level asserts. In contrast, developer tests
typically validate that the application output matches the
expected one. We partially address this limitation by val-
idating the output of these utilities against the output pro-
duces by a different implementation (see § 5.5).

5.2.3 Bugs found

KLEE found ten unique bugs in COREUTILS (usually
memory error crashes). Figure 7 gives the command
lines used to trigger them. The first three errors ex-
isted since at least 1992, so should theoretically crash any
COREUTILS distribution up to 6.10. The others are more
recent, and do not crash older COREUTILS distributions.
While one bug (in seq) had been fixed in the develop-
ers’ unreleased version, the other bugs were confirmed
and fixed within two days of our report. In addition, ver-
sions of the KLEE-generated test cases for the new bugs
were added to the official COREUTILS test suite.
As an illustrative example, we discuss the bug in pr

(used to paginate files before printing) hit by the invoca-
tion “pr -e t2.txt” in Figure 7. The code contain-
ing the bug is shown in Figure 8. On the path that hits
the bug, both chars per input tab and chars per c

equal tab width (let’s call it T). Line 2665 computes
width = (T − input position mod T) using the
macro on line 602. The root cause of the bug is the in-
correct assumption that 0 ≤ x mod y < y, which only
holds for positive integers. When input position

is positive, width will be less than T since 0 ≤

input position mod T < T . However, in the pres-

10

Cadar, Dunbar, and Engler. KLEE: Unassisted and Automatic Generation of High-Coverage Tests for
Complex Systems Programs, OSDI 2008

KLEE: Coreutils crashes

−100%

−50%

0%

50%

100%

k
l
e
e

vs
.

M
an

u
al

(E
L
O

C
%

)
k
l
e
e

vs
.

M
an

u
al

(E
L
O

C
%

)

1 10 25 50 75

Figure 6: Relative coverage difference between KLEE and
the COREUTILS manual test suite, computed by subtracting
the executable lines of code covered by manual tests (Lman)
from KLEE tests (Lklee) and dividing by the total possible:
(Lklee − Lman)/Ltotal. Higher bars are better for KLEE,
which beats manual testing on all but 9 applications, often
significantly.

5.2.2 Comparison against developer test suites

Each utility in COREUTILS comes with an extensive
manually-written test suite extended each time a new bug
fix or extra feature is added. 7 As Table 2 shows, KLEE
beats developer tests handily on all aggregate measures:
overall total line coverage (84.5% versus 67.7%), aver-
age coverage per tool (90.9% versus 68.4%) and median
coverage per tool (94.7% versus 72.5%). At a more de-
tailed level, KLEE gets 100% coverage on 16 tools and
over 90% coverage on 56 while the developer tests get
100% on a single utility (true) and reach over 90% on
only 7. Finally, the developers tests get below 60% cov-
erage on 24 tools while KLEE always achieves over 60%.
In total, an 89 hour run of KLEE (about one hour per ap-
plication) exceeds the coverage of a test suite built over
a period of fifteen years by 16.8%!
Figure 6 gives a relative view of KLEE versus devel-

oper tests by subtracting the lines hit by manual testing
from those hit by KLEE and dividing this by the total pos-
sible. A bar above zero indicates that KLEE beat the man-
ual test (and by how much); a bar below shows the oppo-
site. KLEE beats manual testing, often significantly, on
the vast majority of the applications.
To guard against hidden bias in line coverage, we

also compared the taken branch coverage (as reported by
gcov) of the manual and KLEE test suites. While the
absolute coverage for both test suites decreases, KLEE’s
relative improvement over the developers’ tests remains:

7We ran the test suite using the commands: env RUN EXPENSIVE
TESTS=YES RUN VERY EXPENSIVE TESTS=YES make
check and make check-root (as root). A small number of tests
(14 out of 393) which require special configuration were not run; from
manual inspection we do not expect these to have a significant impact
on our results.

paste -d\\ abcdefghijklmnopqrstuvwxyz
pr -e t2.txt
tac -r t3.txt t3.txt
mkdir -Z a b
mkfifo -Z a b
mknod -Z a b p
md5sum -c t1.txt
ptx -F\\ abcdefghijklmnopqrstuvwxyz
ptx x t4.txt
seq -f %0 1

t1.txt: "\t \tMD5("
t2.txt: "\b\b\b\b\b\b\b\t"
t3.txt: "\n"
t4.txt: "a"

Figure 7: KLEE-generated command lines and inputs (modi-
fied for readability) that cause program crashes in COREUTILS
version 6.10 when run on Fedora Core 7 with SELinux on a
Pentium machine.

KLEE achieves 76.9% overall branch coverage, while the
developers’ tests get only 56.5%.
Finally, it is important to note that although KLEE’s

runs significantly beat the developers’ tests in terms of
coverage, KLEE only checks for low-level errors and vi-
olations of user-level asserts. In contrast, developer tests
typically validate that the application output matches the
expected one. We partially address this limitation by val-
idating the output of these utilities against the output pro-
duces by a different implementation (see § 5.5).

5.2.3 Bugs found

KLEE found ten unique bugs in COREUTILS (usually
memory error crashes). Figure 7 gives the command
lines used to trigger them. The first three errors ex-
isted since at least 1992, so should theoretically crash any
COREUTILS distribution up to 6.10. The others are more
recent, and do not crash older COREUTILS distributions.
While one bug (in seq) had been fixed in the develop-
ers’ unreleased version, the other bugs were confirmed
and fixed within two days of our report. In addition, ver-
sions of the KLEE-generated test cases for the new bugs
were added to the official COREUTILS test suite.
As an illustrative example, we discuss the bug in pr

(used to paginate files before printing) hit by the invoca-
tion “pr -e t2.txt” in Figure 7. The code contain-
ing the bug is shown in Figure 8. On the path that hits
the bug, both chars per input tab and chars per c

equal tab width (let’s call it T). Line 2665 computes
width = (T − input position mod T) using the
macro on line 602. The root cause of the bug is the in-
correct assumption that 0 ≤ x mod y < y, which only
holds for positive integers. When input position

is positive, width will be less than T since 0 ≤

input position mod T < T . However, in the pres-

10

Cadar, Dunbar, and Engler. KLEE: Unassisted and Automatic Generation of High-Coverage Tests for
Complex Systems Programs, OSDI 2008

Mayhem
• Developed at CMU (Brumley et al), runs on binaries!

• Uses BFS-style search and native execution
• Combines best of symbolic and concolic strategies!

• Automatically generates exploits when bugs found

Mergepoint
• Extends Mayhem with a technique called veritesting
• Combines symbolic execution with static analysis
• Use static analysis for complete code blocks
• Use symbolic execution for hard-to-analyze parts

- Loops (how many times will it run?), complex pointer arithmetic,
system calls

• Better balance of time between solver and executor
• Finds bugs faster!
• Covers more of the program in the same time

• Found 11,687 bugs in 4,379 distinct applications in a
Linux distribution
• Including new bugs in highly tested code

Other symbolic executors
• Cloud9 — Parallel, multi-threaded symbolic execution
• Extends KLEE (available)

• jCUTE, Java PathFinder — symbolic execution for
Java (available)

• Bitblaze — Binary analysis framework (available)

• Otter — directed symbolic execution for C (available)
• Give the tool a line number, and it try to generate a test

case to get there

• Pex — symbolic execution for .NET

Summary
• Symbolic execution generalizes testing!
• Uses static analysis to direct generation of tests that

cover different program paths

• Used in practice to find security-critical bugs in
production code!
• SAGE at Microsoft
• Mergepoint for Linux

• Many tools freely available

