Symbolic execution as search, and
the rise of solvers



Search and SMT

e Symbolic execution is appealingly simple and
useful, but computationally expensive

* We will see how the effective use of symbolic
execution boils down to a kind of search

* And also take a moment to see how its feasibility at all
has been aided by the rise of SMT solvers



Path explosion

e Usually can't run symbolic execution to exhaustion
Exponential in branching structure

1. inta=qa,b=B,c=y; // symbolic
2. if (a) ... else ...;
3. if (b) ... else ...;
4. if (C) ... else ...;

Ex: 3 variables, 8 program paths
Loops on symbolic variables even worse

1. inta=aq; //symbolic
2. while (a) do ...;
3. ...

Potentially 2231 paths through loop!



Compared to static analysis

« Stepping back: Here is a benefit of static analysis

- Static analysis will actually terminate even when
considering all possible program runs

|t does this by approximating multiple loop
executions, or branch conditions
- Essentially assumes all branches, and any humber of
loop iterations, are feasible

 But can lead to false alarms, of course



Basic (symbolic) search

e Simplest ideas: algorithms 101
- Depth-first search (DFS) — worklist = stack
- Breadth-first search (BFS) — worklist = queue

» Potential drawbacks
- Not guided by any higher-level knowledge
- Probably a bad sign

- DFS could easily get stuck in one part of the program
- E.g., it could keep going around a loop over and over again

- Of these two, BFS is a better choice
But more intrusive to implement (can’t easily be concolic)



Search strategies

* Need to prioritize search

- Try to steer search towards paths more likely to contain
assertion failures

-« Only run for a certain length of time
- So if we don’t find a bug/vulnerability within time budget, too bad

* Think of program execution as a DAG
- Nodes = program states
- Edge(n+,n2) = can transition from state n1 to state n»

 We need a kind of graph exploration algorithm
- At each step, pick among all possible paths



Randomness

 We don't know a priori which paths to take, so adding
some randomness seems like a good idea

ldea 1: pick next path to explore uniformly at random
(Random Path, or RP)

|dea 2: randomly restart search if haven'’t hit anything
interesting in a while

|dea 3: choose among equal priority paths at random
- All of these are good ideas, and randomness is very effective

« One drawback of randomness: reproducibility

- Probably good to use pseudo-randomness based on

seed, and then record which seed is picked
Or bugs may disappear (or reappear) on later runs



Coverage-guided heuristics

* ldea: Try to visit statements we haven’t seen before

e Approach
- Score of statement = # times it's been seen
- Pick next statement to explore that has lowest score

* Why might this work?
- Errors are often in hard-to-reach parts of the program
- This strategy tries to reach everywhere.

« Why might this not work?

- Maybe never be able to get to a statement if proper
precondition not set up



Generational search

« Hybrid of BFS and coverage-guided
- Generation 0. pick one program at random, run to
completion
Generation 1: take paths from gen 0; negate one branch
condition on a path to yield a new path prefix; find a

solution for that prefix; then take the resulting path
- Semi-randomly assigns to any variables not constrained by the prefix

Generation n. similar, but branching off gen n-1

e Also uses a coverage heuristic to pick priority



Combined search

 Run multiple searches at the same time
- Alternate between them; e.g., Fitnext

» |dea: no one-size-fits-all solution
- Depends on conditions needed to exhibit bug

- So will be as good as “best” solution, within a constant
factor for wasting time with other algorithms

- Could potentially use different algorithms to reach
different parts of the program



SMT solver performance

« SAT solvers are at core of SMT solvers
In theory, could reduce all SMT queries to SAT queries
In practice, SMT-level optimizations are critical

« Some example extensions/improvements
- Simple identities (x + 0 = x, x *0 = 0)
- Theory of arrays (read(x, write(42, x, A)) = 42)
42 = array index, A = array, x = element
- Caching (memoize solver queries)

Remove useless variables

E.g., if trying to show path feasible, only the part of the path condition
related to variables in guard are important



Popular SMT solvers

Z3 - developed at Microsoft Research

- http://z3.codeplex.com/

Yices - developed at SR

- http://yices.csl.sri.com/

STP - developed by Vijay Ganesh, now @ Waterloo

- https://sites.google.com/site/stpfastprover/

CVC3 - developed primarily at NYU

- http://www.cs.nyu.edu/acsys/cvc3/



But: Path-based search limited

int counter = 0, values = 0;
for (1 = 0; 1i<100; i++) {
if (input[i] == ‘B’') {
counter++;
values += 2;
}
}
assert (counter != 75);

e This program has 219 possible execution paths.

e Hard to find the bug:
-+ (190 75) = 278 paths reach buggy line of code
« Pr(finding bug) = 278 | 2100 = 2-22



Symbolic execution systems



Resurgence

Two key systems that triggered revival of this topic:

DART — Godefroid and Sen, PLDI 2005

- Godefroid = model checking, formal systems

background

EXE — Cadar, Ganesh, Pawlowski, Dill, and Engler,
CCS 2006

- Ganesh and Dill = SMT solver called STP (used in

implementation), Cadar and Engler = systems

Now on to next-generation systems



SAGE

« Concolic executor developed at Microsoft Research
- Grew out of Godefroid’s work on DART
- Uses generational search

* Primarily targets bugs in file parsers
. E.g., JPEG, DOCX, PPT, etc

« Good fit for concolic execution
- Likely to terminate
- Just input/output behavior



SAGE Impact

* Used on production software at MS. Since 2007:

- 500+ machine years (in largest fuzzing lab in the world)
Large cluster of machines continually running SAGE

- 3.4 Billion+ constraints (largest SMT solver usage ever!)

100s of apps, 100s of bugs (missed by everything else...)
Ex: 1/3 of all Win7 WEX security bugs found by SAGE

- Bug fixes shipped quietly to 1 Billion+ PCs
- Millions of dollars saved (for Microsoft and the world)
- SAGE is now used daily in Windows, Office, etc.




KLEE

- Symbolically executes LLVM bitcode
- LLVM compiles source file to .bc file
- KLEE runs the .bc file
- Grew out of work on EXE

« Works in the style of our basic symbolic executor
- Uses fork () to manage multiple states

- Employs a variety of search strategies
- Primarily random path + coverage-guided

- Mocks up the environment to deal with system calls, file
accesses, etc.

Freely available with LLVM distribution



KLEE: Coverage tor Coreutils

100%
X
8 50% |-
—
=
=2
0%
<
=
‘ 1
o —50% § 1
= '
2 ‘
X

—100% T—g 25 50 75

Figure 6: Relative coverage difference between KLEE and
the COREUTILS manual test suite, computed by subtracting
the executable lines of code covered by manual tests (Lyqn)
from KLEE tests (L) and dividing by the total possible:
(Lkiee — Lman)/Ltotar. Higher bars are better for KLEE,
which beats manual testing on all but 9 applications, often
significantly.

Cadar, Dunbar, and Engler. KLEE: Unassisted and Automatic Generation of High-Coverage Tests for
Complex Systems Programs, OSDI 2008



KLEE: Coreutils crashes

paste -d\\ abcdefghijklmnopgrstuvwxyz
pr -e t2.txt

tac -r t3.txt t3.txt

mkdir -Z a b

mkfifo -Z a b

mknod -Z a b p

md5sum -c tl.txt

ptx -F\\ abcdefghijklmnopgrstuvwxyz
ptx x t4.txt

seq -f %0 1

tl.axt: "\t \tMD5("

2.ext: "\b\b\b\b\b\b\b\t"

t3.txt: "\n"

t4.axt: "a"

Figure 7: KLEE-generated command lines and inputs (modi-
fied for readability) that cause program crashes in COREUTILS
version 6.10 when run on Fedora Core 7 with SELinux on a
Pentium machine.

Cadar, Dunbar, and Engler. KLEE: Unassisted and Automatic Generation of High-Coverage Tests for
Complex Systems Programs, OSDI 2008



Mayhem

e Developed at CMU (Brumley et al), runs on binaries

« Uses BFS-style search and native execution
- Combines best of symbolic and concolic strategies

« Automatically generates exploits when bugs found



Mergepoint

* Extends Mayhem with a technique called veritesting
Combines symbolic execution with static analysis
- Use static analysis for complete code blocks

- Use symbolic execution for hard-to-analyze parts

- Loops (how many times will it run?), complex pointer arithmetic,
system calls

» Better balance of time between solver and executor
- Finds bugs faster
- Covers more of the program in the same time

 Found 11,687 bugs in 4,379 distinct applications in a
Linux distribution
Including new bugs in highly tested code



Other symbolic executors

Cloud9 — Parallel, multi-threaded symbolic execution
- Extends KLEE (available)

jCUTE, Java PathFinder — symbolic execution for
Java (available)

Bitblaze — Binary analysis framework (available)

Otter — directed symbolic execution for C (available)

- Give the tool a line number, and it try to generate a test
case to get there

Pex — symbolic execution for .NET



Summary

- Symbolic execution generalizes testing

- Uses static analysis to direct generation of tests that
cover different program paths

* Used in practice to find security-critical bugs in
production code
- SAGE at Microsoft
- Mergepoint for Linux

- Many tools freely available



