
Static Analysis vs. and
Dynamic Analysis

Vulnerabilities Detection

Detection of the Vulnerability Julian Cohen's Contemporary Automatic Program Analysis

https://www.youtube.com/watch?v=P0nHId1umvY

Detection of the Vulnerability

● Detect the presence of vulnerabilities in the code during the development, testing, and maintenance

● Trade-off between soundness and completeness

● A detection technique is sound for a given category if it can correctly conclude that a given program has
no vulnerabilities

○ An unsound detection technique may have false negatives, i.e., actual vulnerabilities that the detection technique
fails to find

● A detection technique is complete for a given category, if any vulnerability it finds is an actual
vulnerability

○ An incomplete detection technique may have false positives, i.e., it may detect issues that do not
turn out to be actual vulnerabilities

Detection of the Vulnerability

● Achieving soundness requires considering all executions of a program.

○ This can be done by static checking of the program code and building up an abstraction
of the program execution

● Achieving completeness can be done by executioning the program that shows the
vulnerability

○ The analysis technique should provide concrete inputs that triggers a vulnerability

○ Like in software testing: the developer writes test cases with concrete inputs and
specific checks for the outputs

Detection of the Vulnerability

Usually Detection tools use an hybrid approach by using
static and dynamic analysis techniques to achieve a good
trade-off between soundness and completeness

Static Analysis vs Symbolic Execution

● Static analysis is any off-line computation that inspects code and produces results
about the code quality. You can apply this to source code or binary code. Static analysis can
use multiple techniques (although classic compiler control and dataflow often figure
prominently as foundation machinery for SA).

● Static analysis may use symbolic execution and inspect the resulting formula. Or it may use
some other techniques such as regular expressions, classic compiler flow analyses, etc. or
some combination. But static analysis does not have to use symbolic execution.

● Symbolic execution is a specific kind of off-line computation that computes some
approximation of what the program actually does by constructing formulas representing the
program state at various points. It is called "symbolic" because the approximation is usually
some kind of formula involving program variables and constraints on their values.

