Return oriented
orogramming (ROP)

Cat and mouse

 Defense: Make stack/heap nonexecutable to
prevent injection of code
Attack response: Jump/return to libc

 Defense: Hide the address of desired libc code or
return address using ASLR

- Attack response: Brute force search (for 32-bit
systems) or information leak (format string vulnerability)

 Defense: Avoid using libc code entirely and use
code in the program text instead

- Attack response: Construct needed functionality using
return oriented programming (ROP)

Return-oriented Programming

 Introduced by Hovav Shacham in 2007
The Geometry of Innocent Flesh on the Bone: Return-
into-libc without Function Calls (on the x86), CCS’07

« |dea: rather than use a single (libc) function to run
your shellcode, string together pieces of existing

code, called gadgets, to do it instead

» Challenges
- Find the gadgets you need
- String them together

Approach

e (Gadgets are instruction groups that end with ret

» Stack serves as the code
* %esp = program counter
- Gadgets invoked via ret instruction

- Gadgets get their arguments via pop, etc.
- Also on the stack

Simple example

%€l
(ret) L
Ox17f: pop %edx equivalent to
ret mov %edx, 5

Gadget

‘orogram counter”

Text ... x17f| 5 next 2 edx

gadeet

T “Instructions” T
0x00 OXffffffff

Code sequence

Ox17f: mov %eax, [%esp] %elp
mov %ebx, |%esp+8 . c
mov [%ebx], %eax seax
%ebx | 0x404
%esp
Text 5 e ‘ 5 I s |0x404|
0x00 0x404 Oxffffffff

Ox17f:

pop %eax

%eip

—quivalent ROP sequence

Ox20d:

ret

pop %ebx
ret

mov [%ebx], %eax

$eax

$ebx

ox404

Text

5

\\ wwgw“M{fMﬂMﬂJ%QSfrf
e ‘ 5 I@xZ@d 0x404 0x21la

?

0x00

T

o0x404

1

Oxffffffff

R &Il r12:0rE 118ed
PLHOGrdMaginG

SAITIKEE A N0

RONE, BUi i SIEED [i cutiiG
Wi AEttE)S £70)) MEEAZINE S
/LU ELE cUtiilc N
IERrUSILS frOM MENS:

S— GMENtS

Image by Dino Dai Zovi

Whence the gadgets?

 How can we find gadgets to construct an exploit?

- Automate a search of the target binary for gadgets
(look for ret instructions, work backwards)
- Cf. https://github.com/OverclOk/rp

* Are there sufficient gadgets to do anything

interesting”?

« Yes: Shacham found that for significant codebases
(e.q., libc), gadgets are Turing complete
- Especially true on x86’s dense instruction set

- Schwartz et al (USENIX Security '11) have automated
gadget shellcode creation, though not needing/
requiring Turing completeness

Blind ROP

 Defense: Randomizing the location of the code
(by compiling for position independence) on a 64-bit
machine makes attacks very difficult

+ Recent, published attacks are often for 32-bit versions
of executables

« Attack response: Blind ROP
If server restarts on a crash, but does not re-randomize:
1.Read the stack to leak canaries and a return address
2.Find gadgets (at run-time) to effect call to write
3.Dump binary to find gadgets for shellcode

http://www.scs.stanford.edu/brop/

Defeat!

The blind ROP team was able to completely
automatically, only through remote interactions,
develop a remote code exploit for nginx, a
popular web server

- The exploit was carried out on a 64-bit executable with
full stack canaries and randomization

Conclusion: give an inch, and they take a mile?

Put another way: Memory safety is really useful!

