
Return oriented
programming (ROP)

Cat and mouse
• Defense: Make stack/heap nonexecutable to

prevent injection of code
• Attack response: Jump/return to libc

• Defense: Hide the address of desired libc code or
return address using ASLR

• Attack response: Brute force search (for 32-bit
systems) or information leak (format string vulnerability)

• Defense: Avoid using libc code entirely and use
code in the program text instead

• Attack response: Construct needed functionality using
return oriented programming (ROP)

Return-oriented Programming
• Introduced by Hovav Shacham in 2007

• The Geometry of Innocent Flesh on the Bone: Return-
into-libc without Function Calls (on the x86), CCS’07

• Idea: rather than use a single (libc) function to run
your shellcode, string together pieces of existing
code, called gadgets, to do it instead

• Challenges
• Find the gadgets you need
• String them together

Approach
• Gadgets are instruction groups that end with ret

• Stack serves as the code
• %esp = program counter
• Gadgets invoked via ret instruction
• Gadgets get their arguments via pop, etc.

- Also on the stack

Simple example
0x17f:'pop'%edx'
'''''''ret

50x17f

0xffffffff0x00

Text

mov'%edx,'5

…

equivalent to
%eip

%edx 5
next'
gadget

%esp

Gadget

“Instructions”

“program counter”

(ret)

Code sequence

0xffffffff0x00

0x404 ……5…

%eax

%ebx

…

%esp

0x17f:'mov'%eax,'[%esp]'
'''''''mov'%ebx,'[%esp+8]'
'''''''mov'[%ebx],'%eax

%eip

0x404

Text

5

0x404

5

Equivalent ROP sequence

0xffffffff0x00

0x4040x20d 0x21a5…

%eax

%ebx

…

%esp

0x17f:'pop'%eax'
'''''''ret'
…'
0x20d:'pop'%ebx''
'''''''ret'
…'
0x21a:'mov'[%ebx],'%eax

%eip

0x404

Text

5

0x404

5

Image by Dino Dai Zovi

Whence the gadgets?
• How can we find gadgets to construct an exploit?

• Automate a search of the target binary for gadgets
(look for ret instructions, work backwards)

- Cf. https://github.com/0vercl0k/rp

• Are there sufficient gadgets to do anything
interesting?

• Yes: Shacham found that for significant codebases
(e.g., libc), gadgets are Turing complete

- Especially true on x86’s dense instruction set
• Schwartz et al (USENIX Security ’11) have automated

gadget shellcode creation, though not needing/
requiring Turing completeness

Blind ROP
• Defense: Randomizing the location of the code

(by compiling for position independence) on a 64-bit
machine makes attacks very difficult

• Recent, published attacks are often for 32-bit versions
of executables

• Attack response: Blind ROP
If server restarts on a crash, but does not re-randomize:

1.Read the stack to leak canaries and a return address
2.Find gadgets (at run-time) to effect call to write
3.Dump binary to find gadgets for shellcode

http://www.scs.stanford.edu/brop/

Defeat!
• The blind ROP team was able to completely

automatically, only through remote interactions,
develop a remote code exploit for nginx, a
popular web server

• The exploit was carried out on a 64-bit executable with
full stack canaries and randomization

• Conclusion: give an inch, and they take a mile?

• Put another way: Memory safety is really useful!

