
Heap Overflow on Metadata
Software Security 2019/2020

Andrea Lanzi

Heap vs Stack

Stack

● Fixed memory allocations known at
compile time

● Local variables, return addresses, function
args.

● Fast and automatic, done by the
compiler.

Heap

● Dynamic memory allocations at runtime
● Objects, big buffers, structs, persistence,

larger things
● Slower and Manual, Done by the

programmer.

Heap Overview

● The heap is pool of memory used for dynamic allocations
at runtime:

○ malloc() grabs memory on the heap
○ free() releases memory on the heap

Heap usage example
#include <string.h>

#include <stdlib.h>

#include <stdio.h>

int main(int argc, char *argv[])

{

 char *buf1 = malloc(128);

 char *buf2 = malloc(256);

 read(fileno(stdin), buf1, 200);

 free(buf2);

 free(buf1);

}

Heap Chunk

struct malloc_chunk {

 INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */

 INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */

 struct malloc_chunk* fd; /* double links -- used only if free. */

 struct malloc_chunk* bk;

 /* Only used for large blocks: pointer to next larger size. */

 struct malloc_chunk* fd_nextsize; /* double links -- used only if free. */

 struct malloc_chunk* bk_nextsize;

};

Heap Chunk

Heap Memory Allocation

● If a program were to call malloc(256),
malloc(512), and finally malloc(1024), the
memory layout of the heap is as follows:

 Meta-data of chunk created by malloc(256)
 The 256 bytes of memory return by malloc

 Meta-data of chunk created by malloc(512)
 The 512 bytes of memory return by malloc

 Meta-data of chunk created by malloc(1024)
 The 1024 bytes of memory return by malloc

 Meta-data of the top chunk

Memory Heap Allocation

● top chunk represents the remaining
available memory on the heap.

● When a new memory request (malloc) is
made, the top chunk is split into two: the
first part becomes the requested chunk,
and the second part is the new the top
chunk (so the "top chunk" shrunk in size)

Heap Deallocation

● When a chunk is freed, the least significant bit of the size field in the
meta data of the next chunk must be cleared.

● Additionally, the prev_size field of this next chunk will be set to the size of
the chunk we are freeing.

● There are actually multiple lists of free chunks. Each list contains free chunks
of a specific size.

● When a chunk is freed it checks whether the chunk before it has already been freed. In case the
previous chunk is not in use, it's coalesced with the chunk being freed.

● When a memory allocation request is made, it first searches for a free chunk that has the same
size (or a bit larger), and will reuse that memory. Only if no appropriate free chunk was found will the
top chunk be used.

Deallocation of free chunk and exploit
void unlink(malloc_chunk *P, malloc_chunk *BK,

malloc_chunk *FD)

{

FD = P->fd;

BK = P->bk;

FD->bk = BK;

BK->fd = FD;

}

ATTACK This allows us to write an arbitrary value to an

arbitrary location

...

FD->bk = return address;

FD = P->fd;

BK = P->bk = address of the buffer (injection vector);

FD->bk = BK;

...

More Recent Techniques
void unlink(malloc_chunk *P, malloc_chunk *BK,

malloc_chunk *FD)

{

FD = P->fd;

BK = P->bk;

if (__builtin_expect (FD->bk != P || BK->fd != P,

0))

malloc_printerr(check_action,"corrupted

double-linked list",P);

else {

FD->bk = BK;

BK->fd = FD;

}

}

● Unfortunately the technique explained
above is no longer possible against newer
versions of glibc. The unlink function has
been hardened.

● These techniques are called:

○ The House of Prime.
○ The House of Mind.
○ The House of Force.
○ The House of Lore.
○ The House of Spirit.
○ The House of Chaos.

House of Force a vulnerable Program
int main(int argc, char *argv[])

{

char *buf1, *buf2, *buf3;

if (argc != 4) return;

buf1 = malloc(256);

strcpy(buf1, argv[1]);

buf2 = malloc(strtoul(argv[2], NULL, 16));

buf3 = malloc(256);

strcpy(buf3, argv[3]);

free(buf3);

free(buf2);

free(buf1);

return 0;

}

House of Force conditions: Requires that we
can overwrite the top chunk, that there is one
malloc call with a user controllable size, and
finally requires another call to malloc.

House of Force: Exploitation technique

● The av->top variable always points to the top chunk. The goal is to overwrite av->top with a user
controllable value. During a call to malloc this variable is used to get a reference to the top chunk
(in case no other chunks could fulfill the request).

● This means that if we control the value of av->top, and we can force a call to malloc which uses the
top chunk, we control where the next chunk will be allocated. Consequently we can write arbitrary
bytes to any address.

● We want to assure that any request (of arbitrary large size) will use the top chunk. To accomplish
this we abuse the overflow in the program to overwrite the metadata of the top chunk. First we write
256 bytes to fill up the allocated space, and we finally overwrite the size with the largest possible
(unsigned) integer.

House of Force: Exploitation technique
 static void* _int_malloc(mstate av, size_t bytes)
 ….
 top = av->top;
 size = chunksize(top);

 if ((unsigned long)(size) >= (unsigned long)(bytes +

MINSIZE))

 {

 remainder_size = size - nb;

 remainder = chunk_at_offset(victim, nb);

 av->top = remainder;

...

define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
Av_top + bytes_to_allocate = Address in memory
Bytes_to_allocate = Address in memory - Av_top ;

By writing in memory at any arbitrary address we can execute any
arbitrary code.

