
Stepping back
What do these attacks have in common?!

1. The attacker is able to control some data that is 
used by the program 

2. The use of that data permits unintentional access 
to some memory area in the program 

• past a buffer 
• to arbitrary positions on the stack



Outline
• Memory safety and type safety!

• Properties that, if satisfied, ensure an application is 
immune to memory attacks 

• Automatic defenses 
• Stack canaries!
• Address space layout randomization (ASLR) 

• Return-oriented programming (ROP) attack 
• How Control Flow Integrity (CFI) can defeat it 

• Secure coding



Memory Safety



A memory safe program execution: 

1. only creates pointers through standard means 
• p = malloc(…), or p = &x, or p = &buf[5], etc. 

2. only uses a pointer to access memory that 
“belongs” to that pointer!

Combines two ideas:  
temporal safety and spatial safety

Low-level attacks enabled by a  
lack of Memory Safety



Spatial safety
• View pointers as triples (p,b,e) 

• p is the actual pointer 
• b is the base of the memory region it may access 
• e is the extent (bounds) of that region 

• Access allowed iff b ≤ p ≤ e-sizeof(typeof(p)) 

• Operations: 
• Pointer arithmetic increments p, leaves b and e alone 
• Using &: e determined by size of original type



Examples
int x;        // assume sizeof(int)=4!
int *y = &x;  // p = &x, b = &x, e = &x+4!
int *z = y+1; // p = &x+4, b = &x, e = &x+4!
*y = 3;       // OK: &x ≤ &x ≤ (&x+4)-4!
*z = 3;       // Bad: &x ≤ &x+4 ≤ (&x+4)-4

struct foo f = { “cat”, 5 };!
char *y = &f.buf; // p = b = &f.buf, e = &f.buf+4!
y[3] = ‘s’;   // OK: p = &f.buf+3 ≤ (&f.buf+4)-1!
y[4] = ‘y’;   // Bad: p = &f.buf+4 ≤ (&f.buf+4)-1

struct foo {!
 char buf[4];!
 int x;!
};



Visualized example
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struct foo {!
  int x;!
  int y;!
  char *pc;!
};!
struct foo *pf = malloc(...);!
pf->x = 5;!
pf->y = 256;!
pf->pc = "before";!
pf->pc += 3;!
int *px = &pf->x;



No buffer overflows
• A buffer overflow violates spatial safety 
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• Overrunning the bounds of the source and/or 
destination buffers implies either src or dst is illegal

void copy(char *src, char *dst, int len) !
{!
  int i;!
  for (i=0;i<len;i++) {!
    *dst = *src; !
    src++; !
    dst++;!
  }!
}



Temporal safety
• A temporal safety violation occurs when trying to 

access undefined memory!
• Spatial safety assures it was to a legal region 
• Temporal safety assures that region is still in play  

• Memory regions either defined or undefined 
• Defined means allocated (and active) 
• Undefined means unallocated, uninitialized, or 

deallocated 

• Pretend memory is infinitely large (we never reuse it)



No dangling pointers
• Accessing a freed pointer violates temporal safety 

!

!

The memory dereferenced no longer belongs to p.  

• Accessing uninitialized pointers is similarly not OK: 

int *p = malloc(sizeof(int));!
*p = 5;!
free(p);!
printf(“%d\n”,*p); // violation

int *p;!
*p = 5; // violation



Most languages memory safe
• The easiest way to avoid all of these vulnerabilities 

is to use a memory safe language 

• Modern languages are memory safe 
• Java, Python, C#, Ruby 
• Haskell, Scala, Go, Objective Caml, Rust 

• In fact, these languages are type safe, which is 
even better (more on this shortly)



Memory safety for C
• C/C++ here to stay. While not memory safe, you 

can write memory safe programs with them 
• The problem is that there is no guarantee 

• Compilers could add code to check for violations 
• An out-of-bounds access would result in an immediate 

failure, like an ArrayBoundsException in Java 

• This idea has been around for more than 20 years. 
Performance has been the limiting factor 

• Work by Jones and Kelly in 1997 adds 12x overhead 
• Valgrind memcheck adds 17x overhead



Progress
Research has been closing the gap!

• CCured (2004), 1.5x slowdown 
• But no checking in libraries 
• Compiler rejects many safe programs 

• Softbound/CETS (2010): 2.16x slowdown 
• Complete checking 
• Highly flexible 

• Coming soon: Intel MPX hardware 
• Hardware support to make checking faster

ccured

https://software.intel.com/en-us/blogs/2013/07/22/intel-memory-
protection-extensions-intel-mpx-support-in-the-gnu-toolchain



Type Safety



Type safety
• Each object is ascribed a type (int, pointer to int, 

pointer to function), and 

• Operations on the object are always compatible 
with the object’s type 

• Type safe programs do not “go wrong” at run-time 

• Type safety is stronger than memory safety
int (*cmp)(char*,char*);!
int *p = (int*)malloc(sizeof(int));!
*p = 1;!
cmp = (int (*)(char*,char*))p;!
cmp(“hello”,”bye”); // crash!

Memory safe, 
but not type safe



Dynamically Typed Languages
• Dynamically typed languages, like Ruby and 

Python, which do not require declarations that 
identify types, can be viewed as type safe as well 

• Each object has one type: Dynamic 
• Each operation on a Dynamic object is permitted, but 

may be unimplemented 
• In this case, it throws an exception Well-defined (but 

unfortunate)



Enforce invariants
• Types really show their strength by enforcing 

invariants in the program 

• Notable here is the enforcement of abstract types, 
which characterize modules that keep their 
representation hidden from clients 

• As such, we can reason more confidently about their 
isolation from the rest of the program

For more on type safety, see 
http://www.pl-enthusiast.net/2014/08/05/type-safety/



Types for Security
• Type-enforced invariants can relate directly to 

security properties!
• By expressing stronger invariants about data’s privacy 

and integrity, which the type checker then enforces 

• Example: Java with Information Flow (JIF)

int{Alice!Bob} x;!
int{Alice!Bob, Chuck} y;!
x = y; //OK: policy on x is stronger!
y = x; //BAD: policy on y is not !
       //as strong as x

http://www.cs.cornell.edu/jif

Types have 
security labels

Labels define 
what information 
flows allowed



Why not type safety?
• C/C++ often chosen for performance reasons 

• Manual memory management 
• Tight control over object layouts 
• Interaction with low-level hardware 

• Typical enforcement of type safety is expensive 
• Garbage collection avoids temporal violations 

- Can be as fast as malloc/free, but often uses much more memory 
• Bounds and null-pointer checks avoid spatial violations  
• Hiding representation may inhibit optimization 

- Many C-style casts, pointer arithmetic, & operator, not allowed



Not the end of the story
• New languages aiming to provide similar features 

to C/C++ while remaining type safe!
• Google’s Go 
• Mozilla’s Rust 
• Apple’s Swift 

• Most applications do not need C/C++!
• Or the risks that come with it 

These languages may be the future of low-level 
programming



Avoiding exploitation



Other defensive strategies

Make the bug harder to exploit
• Examine necessary steps for exploitation, make one or 

more of them difficult, or impossible 

Avoid the bug entirely
• Secure coding practices 
• Advanced code review and testing 

- E.g., program analysis, penetrating testing (fuzzing)

Strategies are complementary: Try to 
avoid bugs, but add protection if some 

slip through the cracks

Until C is memory safe, what can we do?



Avoiding exploitation

• Putting attacker code into the memory (no zeroes) 

• Getting %eip to point to (and run) attacker code 

• Finding the return address (guess the raw addr)

Recall the steps of a stack smashing attack:

How can we make these attack steps more difficult?

• Best case: Complicate exploitation by changing the 
the libraries, compiler and/or operating system

• Then we don’t have to change the application code 
• Fix is in the architectural design, not the code



Detecting overflows with canaries
19th century coal mine integrity  

• Is the mine safe? 
• Dunno; bring in a canary 
• If it dies, abort!

We can do the same 
for stack integrity



Detecting overflows with canaries

00 00 00 00

buffer

Text

%eip

... &arg1%eip%ebp …02 8d e2 10

canary

nop nop nop …0xbdf \x0f \x3c \x2f ...

Not the expected value: abort

What value should the canary have?



Canary values

1. Terminator canaries (CR, LF, NUL (i.e., 0), -1) 
• Leverages the fact that scanf etc. don’t allow these 

2. Random canaries 
• Write a new random value @ each process start 
• Save the real value somewhere in memory 
• Must write-protect the stored value 

3. Random XOR canaries 
• Same as random canaries 
• But store canary XOR some control info, instead

From StackGuard [Wagle & Cowan]



Recall our challenges

• Putting code into the memory (no zeroes) 
• Defense: Make this detectable with canaries

• Getting %eip to point to (and run) attacker code 

• Finding the return address (guess the raw addr)



Recall our challenges

• Putting code into the memory (no zeroes) 
• Defense: Make this detectable with canaries

• Getting %eip to point to (and run) attacker code 

• Finding the return address (guess the raw addr)

•  Defense: Make stack (and heap) non-executable

So: even if canaries 
could be bypassed, no 

code loaded by the 
attacker can be 

executed (will panic)



Return-to-libc

&arg1%eip%ebp00 00 00 00

buffer

Text

%eip

... …nop nop nop …

nop sled

0xbdf

good 
guesspadding

\x0f \x3c \x2f ...

malicious code

0x17f

known 
location

0x20d

libc

exec()... ...printf() ... “/bin/sh”

libc

No need to 
know the return 

address



Recall our challenges

• Putting code into the memory (no zeroes) 
• Defense: Make this detectable with canaries 

• Getting %eip to point to (and run) attacker code 
• Defense: Make stack (and heap) non-executable 

• Finding the return address (guess the raw addr)

•  Defense: Use Address-space Layout Randomization

Randomly place standard 
libraries and other elements in 

memory, making them harder to 
guess



Recall our challenges

• Putting code into the memory (no zeroes) 
• Defense: Make this detectable with canaries 

• Getting %eip to point to (and run) attacker code 
• Defense: Make stack (and heap) non-executable 
• Defense: Use Address Space Layout Randomization 

• Finding the return address (guess the raw addr)
•  Defense: Use Address-space Layout Randomization



Return-to-libc, thwarted

&arg1%eip%ebp00 00 00 00

buffer
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%eip

... …
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???

unknown 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libc

exec()... ...printf() ... “/bin/sh”

libc

???



ASLR today
• Available on modern operating systems

• Available on Linux in 2004, and adoption on other 
systems came slowly afterwards; most by 2011

• Caveats:  
• Only shifts the offset of memory areas 

- Not locations within those areas 
• May not apply to program code, just libraries 
• Need sufficient randomness, or can brute force 

- 32-bit systems typically offer 16 bits = 65536 possible starting 
positions; sometimes 20 bits. Shacham demonstrated a brute force 
attack could defeat such randomness in 216 seconds (on 2004 
hardware) 

- 64-bit systems more promising, e.g., 40 bits possible


