
Control Flow Integrity

Behavior-based detection
• Stack canaries, non-executable data, and ASLR aim

to complicate various steps in a standard attack
• But they still may not stop it

• Idea: observe the program’s behavior — is it
doing what we expect it to?

• If not, might be compromised

• Challenges
• Define “expected behavior”
• Detect deviations from expectation efficiently
• Avoid compromise of the detector

Control-flow Integrity (CFI)
• Define “expected behavior”:

• Detect deviations from expectation efficiently

• Avoid compromise of the detector

Control flow graph (CFG)

In-line reference monitor (IRM)

Sufficient randomness, immutability

Efficient?
• Classic CFI (2005) imposes 16% overhead on

average, 45% in the worst case
• Works on arbitrary executables
• Not modular (no dynamically linked libraries)

• Modular CFI (2014) imposes 5% overhead on
average, 12% in the worst case

• C only (part of LLVM)
• Modular, with separate compilation
• http://www.cse.lehigh.edu/~gtan/projects/upro/

Secure?
• MCFI can eliminate 95.75% of ROP gadgets on

x86-64 versions of SPEC2006 benchmark suite
• By ruling their use non-compliant with the CFG

• Average Indirect-target Reduction (AIR) > 99%
• AIR is, in essence, the percentage of possible targets

of indirect jumps that CFI rules out
- For CFI: nearly all of them

Call Graph

sort2
sort

lt

gt

Which functions call other functions

bool'lt(int'x,'int'y)'{'
''return'x<y;'
}'
bool'gt(int'x,'int'y)'{'
''return'x>y;'
}

sort2(int'a[],'int'b[],'int'len)'
{'
''sort(a,'len,'lt);'
''sort(b,'len,'gt);'
}

Control Flow Graph
bool'lt(int'x,'int'y)'{'
''return'x<y;'
}'
bool'gt(int'x,'int'y)'{'
''return'x>y;'
}

sort2(int'a[],'int'b[],'int'len)'
{'
''sort(a,'len,'lt);'
''sort(b,'len,'gt);'
}

sort2
sort

lt

gt

Break into basic blocks
Distinguish calls from returns

CFI: Compliance with CFG
• Compute the call/return CFG in advance

• During compilation, or from the binary

• Monitor the control flow of the program and
ensure that it only follows paths allowed by the CFG

• Observation: Direct calls need not be monitored
• Assuming the code is immutable, the target address

cannot be changed

• Therefore: monitor only indirect calls
• jmp, call, ret with non-constant targets

Control Flow Graph
bool'lt(int'x,'int'y)'{'
''return'x<y;'
}'
bool'gt(int'x,'int'y)'{'
''return'x>y;'
}

sort2(int'a[],'int'b[],'int'len)'
{'
''sort(a,'len,'lt);'
''sort(a,'len,'gt);'
}

sort2
sort

lt

gt

Direct calls (always the same target)

Control Flow Graph
bool'lt(int'x,'int'y)'{'
''return'x<y;'
}'
bool'gt(int'x,'int'y)'{'
''return'x>y;'
}

sort2(int'a[],'int'b[],'int'len)'
{'
''sort(a,'len,'lt);'
''sort(a,'len,'gt);'
}

sort2
sort

lt

gt

Indirect transfer (call via register, or ret)

In-line Monitor
• Implement the monitor in-line, as a program

transformation

• Insert a label just before the target address of an
indirect transfer

• Insert code to check the label of the target at
each indirect transfer

• Abort if the label does not match

• The labels are determined by the CFG

Simplest labeling

sort2
sort

lt

gtlabel L

label L

label L
label L

label L

Use the same label at all targets

Simplest labeling

sort2
sort

lt

gtlabel L

label L

label L
label L

label L

Use the same label at all targets
Blocks return to the start of direct-only call targets

system

but not incorrect ones

ok…

Detailed labeling

sort2
sort

lt

gtlabel L

label L

label M
label N

label M

Constraints:
• return sites from calls to sort must share a label (L)
• call targets gt and lt must share a label (M)
• remaining label unconstrained (N)

Still permits call from site A to return to site B

ok…

Classic CFI instrumentation

Check target
label

Check target
label

Can we defeat CFI?
• Inject code that has a legal label

• Won’t work because we assume non-executable data

• Modify code labels to allow the desired control flow
• Won’t work because the code is immutable

• Modify stack during a check, to make it seem to
succeed

• Won’t work because adversary cannot change
registers into which we load relevant data

- No time-of-check, time-of-use bug (TOCTOU)

CFI Assurances
• CFI defeats control flow-modifying attacks

• Remote code injection, ROP/return-to-libc, etc.

• But not manipulation of control-flow that is
allowed by the labels/graph

• Called mimicry attacks
• The simple, single-label CFG is susceptible to these

• Nor data leaks or corruptions
• Heartbleed would not be prevented
• Nor the authenticated overflow

- Control modification is allowed by graph

void func(char *arg1)
{
 int authenticated = 0;
 char buffer[4];
 strcpy(buffer, str);
 if(authenticated) { …
}

