Control Flow Integrity

Behavior-based detection

e Stack canaries, non-executable data, and ASLR aim
to complicate various steps in a standard attack
- But they still may not stop it

* |dea: observe the program’s behavior — is it
doing what we expect it to?
- If not, might be compromised

e Challenges
« Define “expected behavior”
- Detect deviations from expectation efficiently
- Avoid compromise of the detector

Control-flow Integrity (CFl)

e Define “expected behavior’:
Control flow graph (CFG)
e Detect deviations from expectation efficiently
In-line reference monitor (IRM)
e Avoid compromise of the detector

Sufficient randomness, immutability

Efficient”

« Classic CFI (2005) imposes 16% overhead on
average, 45% in the worst case
- Works on arbitrary executables
- Not modular (no dynamically linked libraries)

 Modular CFl (2014) imposes 5% overhead on
average, 12% in the worst case
« Conly (part of LLVM)
- Modular, with separate compilation
- http://www.cse.lehigh.edu/~gtan/projects/upro/

Secure?

 MCFI can eliminate 95.75% of ROP gadgets on
x86-64 versions of SPEC2006 benchmark suite
By ruling their use non-compliant with the CFG

* Average Indirect-target Reduction (AIR) > 99%

- AlRis, in essence, the percentage of possible targets

of indirect jumps that CFl rules out
- For CFI: nearly all of them

Call Graph

bool 1t(int x, int y) {

sort2(int a[], int b[], int len) return x<y;

{
}
sort(a, len, 1t); : i
b) b) bool gt(int X, 1nt
sort(b, len, gt); retﬁrﬁ X>Y; a

} }

P
-

Which functions call other functions

Control Flow Graph

sort2(int a[], int b[], int len)
{
sort(a, len, 1t);
sort(b, len, gt);
¥

bool 1t(int x, int y) {
return x<y;

}
bool gt(int x, int y) {
return x>y;

¥

Break into basic blocks

Distinguish calls from returns

CFl: Compliance with CFG

Compute the call/return CFG in advance
« During compilation, or from the binary

Monitor the control flow of the program and
ensure that it only follows paths allowed by the CFG

Observation: Direct calls need not be monitored

- Assuming the code is immutable, the target address
cannot be changed

Therefore: monitor only indirect calls
jmp, call, ret with non-constant targets

Control Flow Graph

sort2(int a[], int b[], int len)

{
sort(a, len, 1t);
sort(a, len, gt);

}

C .o

e
— .

bool 1t(int x, int y) {
return x<y;

}
bool gt(int x, int y) {
return x>y;

¥

Direct calls (always the same target)

Control Flow Graph

bool 1t(int x, int y) {

sort2(int a[], int b[], int len) return x<y;

~

}
bool gt(int x, int y) {
return x>y;

sort(a, len, 1t);
sort(a, len, gt);

¥

A (S—

Indirect transfer (call via register, or ret)

IN-line Monitor

Implement the monitor in-line, as a program
transformation

Insert a label just before the target address of an
indirect transfer

Insert code to check the label of the target at
each indirect transfer

« Abort if the label does not match

The labels are determined by the CFG

Simplest labeling

sort2

label L

label L
label L label L

Use the same label at all targets

Simplest labeling

sort
label L

Iabel

Iabel L

OENTRY

system

Use the same label at all targets
Blocks return to the start of direct-only call targets
but not incorrect ones

Detalled labeling

sort2

sort

) =
¢
Constraints:

e return sites from calls to sort must share a label (L)
e call targets gt and 1t must share a label (M)
* remaining label unconstrained (N)

Still permits call from site A to return to site B

Classic CFl instrumentation

FF 53 08 call [ebx+8] ; call a function pointer

is instrumented using prefetchnta destination ID

¥ Check target

8B 43 08 mov eax, [ebx+8] ;
3E 81 78 04 78 56 34 12 cmp [eax+4],] 12345678h

75 13 jne error_label ; if n
FF DO call eax ; call function pointer
|3E OF 18 05|DD CC BB AA prefetchnta [AABBCCDDh] ; label ID, used upon the return

Fig. 4. Our CFI implementation of a call through a function pointer.

Bytes (opcodes) x86 assembly code Comment

C2 10 00 ret 10h ; return, and pop 16 extra bytes

is instrumented using prefetchnta destination IDs, to become:

8B 0C 24 mov ecx, [esp]

83 C4 14 add esp, 14h Check target
3E 81 79 04 DD CC BB AA cmp [ecf+dl, s label

75 13 jne error_label

FF E1 jmp ecx ; jump to return address

Can we defeat CFI?

* Inject code that has a legal label
Won't work because we assume non-executable data

* Modify code labels to allow the desired control flow
Won't work because the code is immutable

* Modify stack during a check, to make it seem to
succeed

Won't work because adversary cannot change

registers into which we load relevant data
- No time-of-check, time-of-use bug (TOCTOU)

C

-l Assurances

CFl defeats control flow-modifying attacks
- Remote code injection, ROP/return-to-libc, etc.

* But not manipulation of control-flow that is
allowed by the labels/graph
- Called mimicry attacks
- The simple, single-label CFG is susceptible to these

* Nor data leaks or corruptions

{

- Heartbleed would not be prevented | int authenticated

« Nor the authenticated overflow
Control modification is allowed by graph

char buffer[4];

}

void func(char *argl)

strcpy(buffer, str);
if (authenticated) { ..

0;

