
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/283121202

Counterfeit Object-oriented Programming: On the Difficulty of Preventing Code

Reuse Attacks in C++ Applications

Conference Paper · May 2015

DOI: 10.1109/SP.2015.51

CITATIONS

295
READS

1,355

6 authors, including:

Felix Schuster

Microsoft

13 PUBLICATIONS 1,173 CITATIONS

SEE PROFILE

Thorsten Holz

Ruhr-Universität Bochum

267 PUBLICATIONS 13,995 CITATIONS

SEE PROFILE

All content following this page was uploaded by Felix Schuster on 24 October 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/283121202_Counterfeit_Object-oriented_Programming_On_the_Difficulty_of_Preventing_Code_Reuse_Attacks_in_C_Applications?enrichId=rgreq-0b6102427be4ec800c9844add22b6a7f-XXX&enrichSource=Y292ZXJQYWdlOzI4MzEyMTIwMjtBUzoyODgwODY4NzQ0NDM3NzZAMTQ0NTY5NjY3MTI2Nw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/283121202_Counterfeit_Object-oriented_Programming_On_the_Difficulty_of_Preventing_Code_Reuse_Attacks_in_C_Applications?enrichId=rgreq-0b6102427be4ec800c9844add22b6a7f-XXX&enrichSource=Y292ZXJQYWdlOzI4MzEyMTIwMjtBUzoyODgwODY4NzQ0NDM3NzZAMTQ0NTY5NjY3MTI2Nw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-0b6102427be4ec800c9844add22b6a7f-XXX&enrichSource=Y292ZXJQYWdlOzI4MzEyMTIwMjtBUzoyODgwODY4NzQ0NDM3NzZAMTQ0NTY5NjY3MTI2Nw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Felix-Schuster-5?enrichId=rgreq-0b6102427be4ec800c9844add22b6a7f-XXX&enrichSource=Y292ZXJQYWdlOzI4MzEyMTIwMjtBUzoyODgwODY4NzQ0NDM3NzZAMTQ0NTY5NjY3MTI2Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Felix-Schuster-5?enrichId=rgreq-0b6102427be4ec800c9844add22b6a7f-XXX&enrichSource=Y292ZXJQYWdlOzI4MzEyMTIwMjtBUzoyODgwODY4NzQ0NDM3NzZAMTQ0NTY5NjY3MTI2Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Microsoft?enrichId=rgreq-0b6102427be4ec800c9844add22b6a7f-XXX&enrichSource=Y292ZXJQYWdlOzI4MzEyMTIwMjtBUzoyODgwODY4NzQ0NDM3NzZAMTQ0NTY5NjY3MTI2Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Felix-Schuster-5?enrichId=rgreq-0b6102427be4ec800c9844add22b6a7f-XXX&enrichSource=Y292ZXJQYWdlOzI4MzEyMTIwMjtBUzoyODgwODY4NzQ0NDM3NzZAMTQ0NTY5NjY3MTI2Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Thorsten-Holz?enrichId=rgreq-0b6102427be4ec800c9844add22b6a7f-XXX&enrichSource=Y292ZXJQYWdlOzI4MzEyMTIwMjtBUzoyODgwODY4NzQ0NDM3NzZAMTQ0NTY5NjY3MTI2Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Thorsten-Holz?enrichId=rgreq-0b6102427be4ec800c9844add22b6a7f-XXX&enrichSource=Y292ZXJQYWdlOzI4MzEyMTIwMjtBUzoyODgwODY4NzQ0NDM3NzZAMTQ0NTY5NjY3MTI2Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ruhr-Universitaet_Bochum?enrichId=rgreq-0b6102427be4ec800c9844add22b6a7f-XXX&enrichSource=Y292ZXJQYWdlOzI4MzEyMTIwMjtBUzoyODgwODY4NzQ0NDM3NzZAMTQ0NTY5NjY3MTI2Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Thorsten-Holz?enrichId=rgreq-0b6102427be4ec800c9844add22b6a7f-XXX&enrichSource=Y292ZXJQYWdlOzI4MzEyMTIwMjtBUzoyODgwODY4NzQ0NDM3NzZAMTQ0NTY5NjY3MTI2Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Felix-Schuster-5?enrichId=rgreq-0b6102427be4ec800c9844add22b6a7f-XXX&enrichSource=Y292ZXJQYWdlOzI4MzEyMTIwMjtBUzoyODgwODY4NzQ0NDM3NzZAMTQ0NTY5NjY3MTI2Nw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Counterfeit Object-oriented Programming
On the Difficulty of Preventing Code Reuse Attacks in C++ Applications

Felix Schuster∗, Thomas Tendyck∗, Christopher Liebchen†, Lucas Davi†, Ahmad-Reza Sadeghi†, Thorsten Holz∗
∗Horst Görtz Institut (HGI) †CASED

Ruhr-Universität Bochum, Germany Technische Universität Darmstadt, Germany

Abstract—Code reuse attacks such as return-oriented program-
ming (ROP) have become prevalent techniques to exploit memory
corruption vulnerabilities in software programs. A variety of
corresponding defenses has been proposed, of which some have
already been successfully bypassed—and the arms race continues.

In this paper, we perform a systematic assessment of recently
proposed CFI solutions and other defenses against code reuse
attacks in the context of C++. We demonstrate that many of these
defenses that do not consider object-oriented C++ semantics pre-
cisely can be generically bypassed in practice. Our novel attack
technique, denoted as counterfeit object-oriented programming
(COOP), induces malicious program behavior by only invoking
chains of existing C++ virtual functions in a program through
corresponding existing call sites. COOP is Turing complete in
realistic attack scenarios and we show its viability by developing
sophisticated, real-world exploits for Internet Explorer 10 on
Windows and Firefox 36 on Linux. Moreover, we show that
even recently proposed defenses (CPS, T-VIP, vfGuard, and VTint)
that specifically target C++ are vulnerable to COOP. We observe
that constructing defenses resilient to COOP that do not require
access to source code seems to be challenging. We believe that
our investigation and results are helpful contributions to the
design and implementation of future defenses against control-
flow hijacking attacks.

I. INTRODUCTION

For more than two decades, attackers have been exploit-
ing memory-related vulnerabilities such as buffer overflow
errors to hijack the control flow of software applications
developed in unsafe programming languages like C or C++.
In the past, attackers typically immediately redirected the
hijacked control flow to their own injected malicious code.
This changed through the broad deployment of the well-known
data execution prevention (DEP) countermeasure [33] that
renders immediate code injection attacks infeasible. However,
attackers adapted quickly and are typically resorting to code
reuse attacks today.

Code reuse attack techniques, such as return-oriented pro-
gramming (ROP) [46] or return-to-libc [37], avoid injecting
code. Instead, they induce malicious program behavior by
misusing existing code chunks (called gadgets) residing in
the attacked application’s address space. In general, one can
distinguish between two phases of a runtime exploit: (1) the
exploitation of a memory corruption vulnerability initially
allowing the adversary to hijack the control flow of an
application, and (2) the actual adversary-chosen malicious
computations and program actions that follow. A generic
mitigation of code reuse attacks is to prevent the initial
exploitation step. In other words, code reuse attacks cannot

be instantiated, if spatial memory corruptions like buffer
overflows and temporal memory corruptions like use-after-free
conditions are prevented in the first place [51]. Indeed, a large
number of techniques have been proposed that provide means
of spatial memory safety [5], [6], temporal memory safety [4],
or both [13], [31], [36], [45]. On the downside, for precise
guarantees, these techniques typically require access or even
changes to an application’s source code and may incur consid-
erable overhead. This hampers their broader deployment [51].

Orthogonally, several defenses have been proposed that do
not tackle the initial control-flow hijacking, but rather aim
at containing or detecting the subsequent malicious control-
flow transitions of code reuse attacks. A popular line of work
impedes code reuse attacks by hiding [7], shuffling [55], or
rewriting [39] an application’s code or data in memory; often
in a pseudo-random manner. For example, the widely de-
ployed address space layout randomization (ASLR) technique
ensures that the stack, the heap, and executable modules of
a program are mapped at secret, pseudo-randomly chosen
memory locations. This way, among others, the whereabouts of
useful code chunks are concealed from an attacker. Bypassing
these defenses often requires the exploitation of an additional
memory disclosure—or information leak—vulnerability [51].

A complementary line of work concerns a generic security
principle called control-flow integrity (CFI). It enforces the
control flow of the program to adhere to a pre-determined
or at runtime generated control-flow graph (CFG) [1]. Pre-
cise CFI—also known as fine-grained CFI—is conceptually
sound [2]. However, similar to memory safety techniques,
there are practical obstacles like overhead or required access to
source code that hinder its broad deployment. Consequently,
different instantiations of imprecise CFI—or coarse-grained
CFI—and related runtime detection heuristics have been pro-
posed, oftentimes working on binary code only. However,
several researchers have recently shown that many of these
solutions [1], [14], [23], [40], [56], [58], [59] can be bypassed
in realistic adversary settings [11], [16], [25], [26], [43].

Contributions: In this paper, we present counterfeit object-
oriented programming (COOP), a novel code reuse attack
technique against applications developed in C++. With COOP
we demonstrate the limitations of a range of proposed defenses
against code reuse attacks in the context of C++. We show
that it is essential for code reuse defenses to consider C++
semantics like the class hierarchy carefully and precisely.
As recovering these semantics without access to source code

can be challenging or sometimes even impossible, our results
demand for a rethinking in the assessment of binary-only
defenses and make a point for the deployment of precise
source code-based defenses where possible.

Our observation is that COOP circumvents virtually all CFI
solutions that are not aware of C++ semantics. Further, we also
find a range of other types of defenses that do not consider
these semantics precisely to be prone to attacks. In fact, we
show that even several recently and concurrently proposed
defenses against control-flow hijacking/code reuse attacks that
specifically target C++ applications (CPS [31], T-VIP [24],
vfGuard [41], and VTint [57]) offer at most partial protection
against COOP, and we can successfully bypass all of them
in realistic attack scenarios. We also discuss how COOP can
reliably be prevented by precise C++-aware CFI, defenses that
provide (spatial and temporal) integrity for C++ objects, or
defenses that prevent certain common memory disclosures.

We demonstrate the viability of our attack approach by
implementing working low-overhead exploits for real-world
vulnerabilities in Microsoft Internet Explorer 10 (32-bit and
64-bit) on Windows and a proof-of-concept vulnerability in
Firefox 36 on Linux x64. To launch our attacks against
modern applications, we inspected and identified easy-to-use
gadgets in a set of well-known Windows system libraries—
among them the standard Microsoft Visual C/C++ runtime
that is dynamically linked to many applications—using basic
symbolic execution techniques. We also show that COOP is
Turing complete under realistic conditions.

Attack Technique Overview: Existing code reuse attacks
typically exhibit unique characteristics in the control flow (and
the data flow) that allow for generic protections regardless of
the language an application was programmed in. For example,
if one can afford to monitor all return instructions in an
application while maintaining a full shadow call stack, even
advanced ROP-based attacks [11], [16], [25], [26], [43] cannot
be mounted [3], [17], [22]. This is different for COOP: it
exploits the fact that each C++ virtual function is address-
taken, which means that a constant pointer exists to it. Ac-
cordingly, C++ applications usually contain a high ratio of
address-taken functions; typically a significantly higher one
compared to C applications. If, for example, an imprecise CFI
solution does not consider C++ semantics, these functions are
all likely valid indirect call targets [1] and can thus be abused.
COOP exclusively relies on C++ virtual functions that are
invoked through corresponding calling sites as gadgets. Hence,
without deeper knowledge of the semantics of an application
developed in C++, COOP’s control flow cannot reasonably be
distinguished from a benign one. Another important difference
to existing code reuse attacks is that in COOP conceptually no
code pointers (e. g., return addresses or function pointers) are
injected or manipulated. As such, COOP is immune against
defenses that protect the integrity and authenticity of code
pointers. Moreover, in COOP, gadgets do not work relative
to the stack pointer. Instead, gadgets are invoked relative to
the this pointer on a set of adversary-defined counterfeit
objects. Note that in C++, the this pointer allows an object

to access its own address. Addressing relative to the this
pointer implies that COOP cannot be mitigated by defenses that
prevent the stack pointer to point to the program’s heap [23],
which is typically the case for ROP-based attacks launched
through a heap-based memory corruption vulnerability.

The counterfeit objects used in a COOP attack typically
overlap such that data can be passed from one gadget to
another. Even in a simple COOP program, positioning coun-
terfeit objects manually can become complicated. Hence, we
implemented a programming framework that leverages the Z3
SMT solver [18] to derive the object layout of a COOP program
automatically.

II. TECHNICAL BACKGROUND

Before presenting the ideas and concepts behind COOP in
detail, we review the background necessary for understanding
our approach and its relation to existing work.

A. Code Reuse Attack Techniques

Return-oriented programming (ROP) [46] is a widely used
code reuse attack technique. The basic idea is to hijack the
control flow of an application and redirect it to existing
short instruction sequences ending in a return instruction
(called gadgets) residing in the executable modules of a
target application. Gadgets are oftentimes not aligned with
the original instruction stream of an executable module. Each
gadget fulfills a specific task such as performing an addition,
or storing a value to memory. In order to execute a malicious
ROP program, the adversary injects a chunk of code pointers
into the address space of an application, where each pointer
references one gadget. Finally, the attacker, abusing a memory
corruption vulnerability, pivots a thread’s stack pointer to that
area. In the following, the injected code pointers on the (fake)
stack are interpreted as return addresses making the control
flow “return” from one attacker-chosen gadget to another.
ROP can be considered a generalization of the older return-to-
libc [37] code reuse attack technique where the attacker makes
the hijacked control flow immediately “return” to the entry of
a sensitive library functions residing for example in libc.

Jump-oriented programming (JOP) is a variant of ROP that
uses indirect jumps and calls rather than return instructions [9],
[12]. In basic JOP, return instructions are emulated by using
a combination of a pop-jmp pair. In addition, JOP attacks
do not necessarily require the stack pointer as base register
to reference code pointers. In particular, an “update-load-
branch” sequence with general purpose registers can be used
instead [12]. The term call-oriented programming (COP) is
also sometimes used to refer to ROP-derived techniques that
employ indirect calls [11], [25].

Although these code reuse attack techniques are very pow-
erful and return-to-libc, ROP, and JOP have even been shown
to enable Turing complete (i. e., arbitrary) malicious computa-
tions [12], [46], [53] in realistic scenarios, they differ in several
subtle aspects from ordinary program execution, which can be
exploited to detect their execution. This is discussed in more
detail in §III-A.

B. Control-Flow Integrity

Abadi et al. introduced the principle of Control-Flow In-
tegrity (CFI) [1] as a generic defense technique against code
reuse attacks. Since then, it has been generally used to refer to
the concept of instrumenting indirect branches in native pro-
grams to thwart code reuse attacks. Usually, the enforcement
of CFI is a two-step process:

1) determination of a program’s approximate control-flow
graph (CFG) X ′.

2) instrumentation of (a subset of) the program’s indirect
branches with runtime checks that enforce the control
flow to be compliant with X ′.

The approximate CFG X ′ can be determined statically or
dynamically; on source code or on binary code. X ′ should be
a supergraph of the intrinsic CFG X encoded in the original
source code of a program. If X ′ is equal to X , it is in general
difficult for an attacker to divert control flow in a way that is
not conform to the semantics of a program’s source code. CFI
checks are often implemented by assigning IDs to all possible
indirect branch locations in a program. At runtime, a check
before each indirect branch validates if the target ID is in
compliance with X ′. When the same ID is assigned to most
of a program’s address-taken functions and returns are not
restricted to comply with the call stack at runtime, one often
speaks of coarse-grained CFI. It has recently been shown that
certain coarse-grained CFI solutions for binary code [1], [58],
[59] cannot prevent advanced ROP-based attacks [16], [25].

C. C++ Code on Binary Level

As our attack approach targets C++ applications, we provide
a brief introduction to the basic concepts of C++ and describe
how they are implemented by compilers in the following.

In C++ and other object-oriented programming languages,
programmers define custom types called classes. Abstractly, a
class is composed of a set of member data fields and member
functions [50]. A concrete instantiation of a class at runtime
is called object. Inheritance and polymorphism are integral
concepts of the object-oriented programming paradigm: new
classes can be derived from one or multiple existing ones,
inheriting at least all visible data fields and functions from
their base classes. Hence, in the general case, an object can
be accessed as instance of its actual class or as instance of
any of its (immediate and not immediate) base classes. In
C++, it is possible to define a member function as virtual.
The implementation of an inherited virtual function may be
overridden in a derived class. Invoking a virtual function on
an object always invokes the specific implementation of the
object’s class even if the object was accessed as instance of
one of its base classes. This is referred to as polymorphism.

C++ compilers implement calls to virtual functions (vcalls)
with the help of vtables. A vtable is an array of pointers to
all, possibly inherited, virtual functions of a class; hence, each
virtual function is address-taken in an application. (For brevity,
we do not consider the case of multiple inheritance here.)

Every object of a class with at least one virtual function
contains a pointer to the corresponding vtable at its very

beginning (offset +0). This pointer is called vptr. Typically,
a vcall on Windows x64 is translated by a compiler to an
instruction sequence similar to the following:
mov rdx, qword ptr [rcx]
call qword ptr [rdx+8]

Here, rcx is the object’s this pointer—also referred to as
this-ptr in the following. First, the object’s vptr is temporarily
loaded from offset +0 from the this-ptr to rdx. Next, in the
given example, the second entry in the object’s vtable is called
by dereferencing rdx+8. Compilers generally hardcode the
index into a vtable at a vcall site. Accordingly, this particular
vcall site always invokes the second entry of a given vtable.

III. COUNTERFEIT OBJECT-ORIENTED PROGRAMMING

COOP is a code reuse attack approach targeting applications
developed in C++ or possibly other object-oriented languages.
We note that many of today’s notoriously attacked applications
are written in C++ (or contain major parts written in C++);
examples include, among others, Microsoft Internet Explorer,
Google Chrome, Mozilla Firefox, Adobe Reader, Microsoft
Office, LibreOffice, and OpenJDK.

In the following, we first state our design goals and our
attacker model for COOP before we describe the actual build-
ing blocks of a COOP attack. For brevity reasons, the rest
of this section focuses on Microsoft Windows and the x86-
64 architecture as runtime environment. The COOP concept
is generally applicable to C++ applications running on any
operating system; it also extends to other architectures.

A. Goals

With COOP we aim to demonstrate the feasibility of creating
powerful code reuse attacks that do not exhibit the revealing
characteristics of existing attack approaches. Even advanced
existing variants of return-to-libc, ROP, JOP, or COP [8], [10],
[11], [16], [25], [26], [43], [53] rely on control flow and data-
flow patterns that are rarely or never encountered for regular
code; among these are typically one or more of the following:
C-1 indirect calls/jumps to non address-taken locations
C-2 returns not in compliance with the call stack
C-3 excessive use of indirect branches
C-4 pivoting of the stack pointer (possibly temporarily)
C-5 injection of new code pointers or manipulation of existing

ones
These characteristics still allow for the implementation of

effective, low-level, and programming language-agnostic pro-
tections. For instance, maintaining a full shadow call stack [3],
[17], [22] suffices to fend off virtually all ROP-based attacks.

With COOP we demonstrate that it is not sufficient to
generally rely on the characteristics C-1–C-5 for the design of
code reuse defenses; we define the following goals for COOP
accordingly:
G-1 do not expose the characteristics C-1–C-5.
G-2 exhibit control flow and data flow similar to those of

benign C++ code execution.
G-3 be widely applicable to C++ applications.
G-4 achieve Turing completeness under realistic conditions.

B. Adversary Model

In general, code reuse attacks against C++ applications
oftentimes start by hijacking a C++ object and its vptr.
Attackers achieve this by exploiting a spatial or temporal
memory corruption vulnerability such as an overflow in a
buffer adjacent to a C++ object or a use-after-free condition.
When the application subsequently invokes a virtual function
on the hijacked object, the attacker-controlled vptr is deref-
erenced and a vfptr is loaded from a memory location of the
attacker’s choice. At this point, the attacker effectively controls
the program counter (rip in x64) of the corresponding thread
in the target application. Generally for code reuse attacks,
controlling the program counter is one of the two basic
requirements. The other one is gaining (partial) knowledge on
the layout of the target application’s address space. Depending
on the context, there may exist different techniques to achieve
this [8], [28], [44], [48].

For COOP, we assume that the attacker controls a C++
object with a vptr and that she can infer the base address of
this object or another auxiliary buffer of sufficient size under
her control. Further, she needs to be able to infer the base
addresses of a set of C++ modules whose binary layouts are
(partly) known to her. For instance, in practice, knowledge on
the base address of a single publicly available C++ library in
the target address space can be sufficient.

These assumptions conform to the attacker settings of most
defenses against code reuse attacks. In fact, many of these
defenses assume far more powerful adversaries that are, e. g.,
able to read and write large (or all) parts of an application’s
address space with respect to page permissions.

C. Basic Approach

Every COOP attack starts by hijacking one of the target
application’s C++ objects. We call this the initial object. Up
to the point where the attacker controls the program counter,
a COOP attack does not deviate much from other code reuse
attacks: in a conventional ROP attack, the attacker typically
exploits her control over the program counter to first manipu-
late the stack pointer and to subsequently execute a chain of
short, return-terminated gadgets. In contrast, in COOP, virtual
functions existing in an application are repeatedly invoked on
counterfeit C++ objects carefully arranged by the attacker.

1) Counterfeit Objects: Typically, a counterfeit object car-
ries an attacker-chosen vptr and a few attacker-chosen data
fields. Counterfeit objects are not created by the target appli-
cation, but are injected in bulk by the attacker. Whereas the
payload in a ROP-based attack is typically composed of fake
return addresses interleaved with additional data, in a COOP
attack, the payload consists of counterfeit objects and possibly
additional data. Similar to a conventional ROP payload, the
COOP payload containing all counterfeit objects is typically
written as one coherent chunk to a single attacker-controlled
memory location.

2) Vfgadgets: We call the virtual functions used in a COOP
attack vfgadgets. As for other code reuse attacks, the attacker
identifies useful vfgadgets in an application prior to the actual

attack through source code analysis or reverse engineering
of binary code. Even when source code is available, it is
necessary to determine the actual object layout of a vfgadget’s
class on binary level as the compiler may remove or pad cer-
tain fields. Only then the attacker is able to inject compatible
counterfeit objects.

We identified a set of vfgadget types that allows to imple-
ment expressive (and Turing complete) COOP attacks in x86
and x64 environments. These types are listed in Table I. In
the following, we gradually motivate our choice of vfgadget
types based on typical code examples. These examples revolve
around the simple C++ classes Student, Course, and
Exam, which reflect some common code patterns that we
found to induce useful vfgadgets. From §III-C3 to §III-C5,
we first walk through the creation of a COOP attack code
that writes to a dynamically calculated address; along the
way, we introduce COOP’s integral concepts of The Main
Loop, Counterfeit Vptrs, and Overlapping Counterfeit Ob-
jects. After that, from §III-D to §III-F, extended concepts for
Passing Arguments to Vfgadgets, Calling API Functions, and
Implementing Conditional Branches and Loops in COOP are
explained.

The reader might be surprised to find more C++ code
listings than actual assembly code in the following. This is
owed to the fact that most of our vfgadgets types are solely
defined by their high-level C++ semantics rather than by the
side effects of their low level assembly code. These types of
vfgadgets are thus likely to survive compiler changes or even
the transition to a different operating system or architecture. In
the cases where assembly code is given, it is the output of the
Microsoft Visual C++ compiler (MSVC) version 18.00.30501
that is shipped with Microsoft Visual Studio 2013.

3) The Main Loop: To repeatedly invoke virtual functions
without violating goals G-1 and G-2, every COOP program
essentially relies on a special main loop vfgadget (ML-G).
The definition of an ML-G is as follows:

A virtual function that iterates over a container (e. g., a C-
style array or a vector) of pointers to C++ objects and invokes
a virtual function on each of these objects.

Virtual functions that qualify as ML-G are common in
C++ applications. Consider for example the code in Figure 1:
the class Course has a field students that points to
a C-style array of pointers to objects of the abstract base
class Student. When a Course object is destroyed (e. g.,
via delete), the virtual destructor1 Course::˜Course is
executed and each Student object is informed via its virtual
function decCourseCount() that one of the courses it was
subscribed to does not exist anymore.

a) Layout of the Initial Object: The attacker shapes the
initial object to resemble an object of the class of the ML-
G. For our example ML-G Course::˜Course, the initial
object should look as depicted in Figure 2: its vptr is set
to point into an existing vtable that contains a reference to
the ML-G such that the first vcall under attacker control

1It is common practice to declare a virtual destructor when a C++ class
has virtual functions.

Vfgadget type Purpose Code example
ML-G The main loop; iterate over container of pointers to counterfeit object and invoke a virtual function

on each such object.
see Figure 1

ARITH-G Perform arithmetic or logical operation. see Figure 4
W-G Write to chosen address. see Figure 4
R-G Read from chosen address. no example given, similar to W-G
INV-G Invoke C-style function pointer. see Figure 8
W-COND-G Conditionally write to chosen address. Used to implement conditional branching. see Figure 6
ML-ARG-G Execute vfgadgets in a loop and pass a field of the initial object to each as argument. see Figure 6
W-SA-G Write to address pointed to by first argument. Used to write to scratch area. see Figure 6
MOVE-SP-G Decrease/increase stack pointer. no example given
LOAD-R64-G Load argument register rdx, r8, or r9 with value (x64 only). see Figure 4

TABLE I: Overview of COOP vfgadget types that operate on object fields or arguments; general purpose types are atop;
auxiliary types are below the double line.

class Student {
public:
 virtual void incCourseCount() = 0;
 virtual void decCourseCount() = 0;
};

class Course {
private:
 Student **students;
 size_t nStudents;
public:
 /* ... */
 virtual ~Course() {
 for (size_t i = 0; i < nStudents; i++)
 students[i]->decCourseCount();
 delete students;
 }
};

ML-G

Fig. 1: Example for ML-G: the virtual destructor of the class
Course invokes a virtual function on each object pointer in
the array students.

leads to the ML-G. In contrast, in a ROP-based attack, this
first vcall under attacker control typically leads to a gadget
moving the stack pointer to attacker controlled memory. The
initial object contains a subset of the fields of the class of
the ML-G; i. e., all data fields required to make the ML-G
work as intended. For our example ML-G, the initial object
contains the fields students and nStudents of the class
Course; the field students is set to point to a C-style
array of pointers to counterfeit objects (object0 and object1
in Figure 2) and nStudents is set to the total number
of counterfeit objects. This makes the Course::˜Course
ML-G invoke a vfgadget of the attacker’s choice for each
counterfeit object. Note how the attacker controls the vptr of
each counterfeit object. Figure 3 schematically depicts the
control-flow transitions in a COOP attack.

4) Counterfeit Vptrs: The control flow and data flow in a
COOP attack should resemble those of a regular C++ program
(G-2). Hence, we avoid introducing fake vtables and reuse
existing ones instead. Ideally, the vptrs of all counterfeit
objects should point to the beginning of existing vtables.
Depending on the target application, it can though be difficult
to find vtables with a useful entry at the offset that is fixed
for a given vcall site. Consider for example our ML-G from
Figure 1: counterfeit objects are treated as instances of the

vptr

Student **students

size_t nStudents

Student *object0

Student *object1

...

object1

object0

vptr

vptr

.rdata

attacker controlled memory

Course::vtable

2nd entry

1st entry

2nd entry

1st entry

ClassA::vtable

3rd entry

4th entry

ClassB::vtable

Fig. 2: Basic layout of attacker controlled memory (left) in a
COOP attack using the example ML-G Course::˜Course.
The initial object (dark gray, top left) contains two fields from
the class Course. Arrows indicate a points-to relation.

Main Loop
(ML-G)

initial attacker-
controlled vcall vfgadget 0

vfgadget 1

...

0 3
2, 4,
6, ... 5

Fig. 3: Schematic control flow in a COOP attack; transitions
are labeled according to the order they are executed.

abstract class Student. For each counterfeit object, the
2nd entry—corresponding to decCourseCount()—in the
supplied vtable is invoked. (The 1st entry corresponds to
incCourseCount().) Here, a COOP attack would ideally
only use vfgadgets that are the 2nd entry in an existing vtable.
Naturally, this largely shrinks the set of available vfgadgets.

This constraint can be sidestepped by relaxing goal G-2 and
letting vptrs of counterfeit objects not necessarily point to the
exact beginning of existing vtables but to certain positive or
negative offsets as is shown for object1 in Figure 2. When
such counterfeit vptrs are used, any available virtual function
can be invoked from a given ML-G.

5) Overlapping Counterfeit Objects: So far we have shown
how, given an ML-G, an arbitrary number of virtual functions

class Exam {
private:
 size_t scoreA, scoreB, scoreC;
public:
 /* ... */
 char *topic;
 size_t score;
 virtual void updateAbsoluteScore() {
 score = scoreA + scoreB + scoreC;
 }

 virtual float getWeightedScore() {
 return (float)(scoreA*5+scoreB*3+scoreC*2) / 10;
 }
};

struct SimpleString {
 char* buffer;
 size_t len;
 /* ... */
 virtual void set(char* s) {
 strncpy(buffer, s, len);
 }
};

W-G

LOAD-R64-G

ARITH-G

Fig. 4: Examples for ARITH-G, LOAD-R64-G, and W-G; for
simplification, the native integer type size_t is used.

(vfgadgets) can be invoked while control flow and data flow
resemble those of the execution of benign C++ code.

Two exemplary vfgadgets of types ARITH-G (arithmetic)
and W-G (writing to memory) are given in Figure 4: in
Exam::updateAbsoluteScore() the field score is set
to the sum of three other fields; in SimpleString::set()
the field buffer is used as destination pointer in a write
operation. In conjunction, these two vfgadgets can be used to
write attacker-chosen data to a dynamically calculated memory
address. For this, two overlapping counterfeit objects are
needed and their alignment is shown in Figure 5.

The key idea here is that the fields score in object0
and buffer in object1 share the same memory. This way,
the result of the summation of the fields of object0 in
Exam::updateAbsoluteScore() is written to the field
buffer of object1. Note how here, technically, also ob-
ject0.topic and object1.vptr overlap. As the attacker does not
use object0.topic this not a problem and she can simply make
the shared field carry object1.vptr. Of course, in our example,
the attacker would likely not only wish to control the desti-
nation address of the write operation through object1.buffer
but also the source address. For this, she needs to be able to
set the argument for the vfgadget SimpleString::set().
How this can be achieved in COOP is described next.

D. Passing Arguments to Vfgadgets

The overlapping of counterfeit objects is an important
concept in COOP. It allows for data to flow between vfgadgets
through object fields regardless of compiler settings or calling
conventions. Unfortunately, we found that useful vfgadgets
that operate exclusively on object fields are rare in practice.
In fact, most vfgadgets we use in our real world exploits (see

vptr

size_t scoreA

size_t scoreB

size_t len

vptr

size_t score char* buffer

o
b

je
ct

1
(S
i
m
p
l
e
S
t
r
i
n
g

)

size_t scoreC

char *topic

...

o
b

je
ct

0
(E
x
a
m

)

+

d
at

a-
fl

o
w

: E
x
a
m
:
:
g
e
t
A
b
s
o
l
u
t
e
S
c
o
r
e
(
)

Fig. 5: Overlapping counterfeit objects of types Exam and
SimpleString

§V) operate on both fields and arguments as is the case for
SimpleString::set().

Due to divergent default calling conventions, we describe
different techniques for passing arguments to vfgadgets for
x64 and x86 in the following.

1) Approach Windows x64: In the default x64 calling
convention on Windows, the first four (non-floating point)
arguments to a function are passed through the registers rcx,
rdx, r8, and r9 [35]. In case there are more than four
arguments, the additional arguments are passed over the stack.
For C++ code, the this-ptr is passed through rcx as the
first argument. All four argument registers are defined to be
caller-saved; regardless of the actual number of arguments a
callee takes. Accordingly, virtual functions often use rdx, r8,
and r9 as scratch registers and do not restore or clear them
on returning. This circumstance makes passing arguments to
vfgadgets simple on x64: first, a vfgadget is executed that
loads one of the corresponding counterfeit object’s fields into
rdx, r8, or r9. Next, a vfgadget is executed that interprets
the contents of these registers as arguments.

We refer to vfgadgets that can be used to load argument
registers as LOAD-R64-G. For the x64 arguments passing
concept to work, a ML-G is required that itself does not
pass arguments to the invoked virtual functions/vfgadgets. Of
course, the ML-G must also not modify the registers rdx,
r8, and r9 between such invocations. In our example, the
attacker can control the source pointer s of the write operation
(namely strncpy()) by invoking a LOAD-R64-G that loads
rdx before SimpleString::set().

As an example for a LOAD-R64-G, consider
Exam::getWeightedScore() from Figure 4; MSVC
compiles this function to the following assembly code:
mov rax, qword ptr [rcx+10h]
mov r8, qword ptr [rcx+18h]
xorps xmm0, xmm0
lea rdx, [rax+rax*2]
mov rax, qword ptr [rcx+8]
lea rcx, [rax+rax*4]
lea r9, [rdx+r8*2]
add r9, rcx
cvtsi2ss xmm0, r9
addss xmm0, dword ptr [__real0]
divss xmm0, dword ptr [__real1]
ret

In condensed from, this LOAD-R64-G provides the following
useful semantics to the attacker:

rdx← 3 · [this + 10h]

r8← [this + 18h]

r9← 3 · [this + 18h] + 2 · [this + 10h]

Thus, by carefully choosing the fields at offsets 10h and
18h from the this-ptr of the corresponding counterfeit object,
the attacker can write arbitrary values to the registers rdx,
r8, and r9.

In summary, to control the source pointer in the writing
operation in SimpleString::set(), the attacker would
first invoke Exam::getWeightedScore() for a counter-
feit object carrying the desired source address divided by 3
at offset 10h. This would load the desired source address to
rdx, which would next be interpreted as the argument s in
the vfgadget SimpleString::set().

a) Other Platforms: In the default x64 C++ calling
convention used by GCC [32], e. g., on Linux, the first six
arguments to a function are passed through registers instead of
only the first four registers. In theory, this should make COOP
attacks simpler to create on Linux x64 than on Windows x64,
as two additional registers can be used to pass data between
vfgadgets. In practice, during the creation of our example
exploits (see §V), we did not experience big differences
between the two platforms.

Although we did not conduct experiments on RISC plat-
forms such as ARM or MIPS, we expect that our x64 approach
directly extends to these because in RISC calling conventions
arguments are also primarily passed through registers.

2) Approach Windows x86: The standard x86 C++ calling
convention on Windows is thiscall [35]: all regular arguments
are passed over the stack whereas the this-ptr is passed in the
register ecx; the callee is responsible for removing arguments
from the stack. Thus, the described approach for x64 does not
work for x86.

In our approach for Windows x86, contrary to x64, we rely
on a main loop (ML-G) that passes arguments to vfgadgets.
More precisely, a 32-bit ML-G should pass one field of the
initial object as argument to each vfgadget. In practice, any
number of arguments may work; for brevity we only discuss
the simplest case of one argument here. We call this field the
argument field and refer to this variant of ML-G as ML-ARG-
G. For an example of an ML-ARG-G, consider the virtual
destructor of the class Course2 in Figure 6: the field id is
passed as argument to each invoked virtual function. Given
such an ML-ARG-G, the attacker can employ one of the two
following approaches to pass chosen arguments to vfgadgets:
A-1 fix the argument field to point to a writable scratch area.
A-2 dynamically rewrite the argument field.

In approach A-1, the attacker relies on vfgadgets that
interpret their first argument not as an immediate value
but as a pointer to data. Consider for example the virtual
function Student2::getLatestExam() from Figure 6
that copies an Exam object; MSVC produces the optimized

W-SA-G

W-COND-G

class Student2 {
private:
 std::list<Exam> exams;
public:
 /* ... */
 virtual void subscribeCourse(int id) { /* ... */ }
 virtual void unsubscribeCourse(int id) { /* ... */ }

 virtual bool getLatestExam(Exam &e) {
 if (exams.empty()) return false;
 e = exams.back();
 return true;
 }
};

class Course2 {
private:
 Student2 **students;
 size_t nStudents;
 int id;
public:
 /* ... */
 virtual ~Course2() {
 for (size_t i = 0; i < nStudents; i++)
 students[i]->unsubscribeCourse(id);
 delete students;
 }
};

ML-ARG-G

Fig. 6: Examples for W-SA-G, W-COND-G, ML-ARG-G

push ebp
mov ebp, esp
cmp dword ptr [ecx+8], 0
jne copyExam

5 xor al, al
pop ebp
ret 4
copyExam:
mov eax, dword ptr [ecx+4]

10 mov ecx, dword ptr [ebp+8]
mov edx, dword ptr [eax+4]
mov eax, dword ptr [edx+0Ch]
mov dword ptr [ecx+4], eax
mov eax, dword ptr [edx+10h]

15 mov dword ptr [ecx+8], eax
mov eax, dword ptr [edx+14h]
mov dword ptr [ecx+0Ch], eax
mov eax, dword ptr [edx+18h]
mov dword ptr [ecx+10h], eax

20 mov al, 1
pop ebp
ret 4

Listing 1: Optimized x86 assembly code produced by
MSVC for Student2::getLatestExam().

x86 assembly code shown in Listing 1 for the function. In
condensed form, lines 9–22 of the assembly code provide the
following semantics:

[arg0 + 4]← [[[this + 4] + 4] + Ch]

[arg0 + 8]← [[[this + 4] + 4] + 10h]

[arg0 + Ch]← [[[this + 4] + 4] + 14h]

[arg0 + 10h]← [[[this + 4] + 4] + 18h]

Note that for approach A-1, arg0 always points to the scratch
area. Accordingly, this vfgadget allows the attacker to copy
16 bytes (corresponding to the four 32-bit fields of Exam)
from the attacker-chosen address [[this + 4] + 4+] + Ch to
the scratch area. We refer to this type of vfgadget that writes
attacker-controlled fields to the scratch area as W-SA-G.

Using Student2::getLatestExam() as W-SA-G in
conjunction with a ML-ARG-G allows the attacker, for exam-
ple, to pass a string of up to 16 characters as first argument
to the vfgadget SimpleString::set().

In approach A-2, the argument field of the initial object
is not fixed as in approach A-1. Instead, it is dynamically
rewritten during the execution of a COOP attack. This allows
the attacker to pass arbitrary arguments to vfgadgets; as
opposed to a pointer to arbitrary data for approach A-1.
For this approach, naturally, a usable W-G is required. As
stated above, we found vfgadgets working solely with fields
to be rare. Hence, the attacker would typically initially follow
approach A-1 and implement A-2-style argument writing on
top of that when required.

a) Passing Multiple Arguments and Balancing the Stack:
So far, we have described how a single argument can be passed
to each vfgadget using a ML-ARG-G main loop gadget on
Windows x86. Naturally, it can be desirable or necessary to
pass more than one argument to a vfgadget. Doing so is simple:
the ML-ARG-G pushes one argument to each vfgadget. In
case a vfgadget does not expect any arguments, the pushed
argument remains on the top of the stack even after the
vfgadget returned. This effectively moves the stack pointer
permanently one slot up as depicted in Figure 7 3©. This
technique allows the attacker to gradually “pile up” arguments
on the stack as shown in Figure 7 4© before invoking a
vfgadget that expects multiple arguments. This technique only
works for ML-ARG-Gs that use ebp and not esp to access
local variables on the stack (i.e., no frame-pointer omission)
as otherwise the stack frame of the ML-ARG-G is destroyed.

Analogously to how vfgadgets without arguments can be
used to move the stack pointer up under an ML-ARG-G,
vfgadgets with more than one argument can be used to move
the stack pointer down as shown in Figure 7 2©. This may
be used to compensate for vfgadgets without arguments or
to manipulate the stack. We refer to vfgadgets with little or
no functionality that expect less or more than one argument
as MOVE-SP-Gs. Ideally, a MOVE-SP-G is an empty virtual
function that just adjusts the stack pointer.

The described technique for passing multiple arguments to
vfgadgets in 32-bit environments can also be used to pass more
than three arguments to vfgadgets in 64-bit environments.

b) Other Platforms: The default x86 C++ calling con-
vention used by GCC, e. g., on Linux, is not thiscall but
cdecl [35]: all arguments including the this-ptr are passed over
the stack; instead of the callee, the caller is responsible for
cleaning the stack. The technique of “piling up” arguments
described in §III-D2a does thus not apply to GCC-compiled
(and compatible) C++ applications on Linux x86 and other
POSIX x86 platforms. Instead, for these platforms, we propose

using ML-ARG-Gs that do not pass one but many control-
lable arguments to vfgadgets. Conceptually, passing too many
arguments to a function does not corrupt the stack in the
cdecl calling convention. Alternatively, ML-ARG-Gs could be
switched during an attack depending on which arguments to
a vfgadget need to be controlled.

E. Calling API Functions

The ultimate goal of code reuse attacks is typically to
pass attacker-chosen arguments to critical API functions or
system calls, e. g., Windows API (WinAPI) functions such
as WinExec() or VirtualProtect(). We identified the
following ways to call a WinAPI function in a COOP attack:

W-1 use a vfgadget that legitimately calls the WinAPI function
of interest.

W-2 invoke the WinAPI function like a virtual function from
the COOP main loop.

W-3 use a vfgadget that calls a C-style function pointer.
While approach W-1 may be practical in certain scenarios

and for certain WinAPI functions, it is unlikely to be feasible
in the majority of cases. For example, virtual functions that
call WinExec() should be close to non-existent.

Approach W-2 is simple to implement: a counterfeit object
can be crafted whose vptr does not point to an actual vtable
but to the import table (IAT) or the export table (EAT) [42]
of a loaded module such that the ML-G invokes the WinAPI
function as a virtual function. Note that IATs, EATs, and
vtables are all arrays of function pointers typically lying
in read-only memory; they are thus in principle compatible
data structures. As simple as it is, the approach has two
important drawbacks: (i) it goes counter to our goal G-2 as
a C function is called at a vcall site without a legitimate
vtable being referenced; and (ii) for x64, the this-ptr of the
corresponding counterfeit object is always passed as the first
argument to the WinAPI function due to the given C++ calling
convention. This circumstance for example effectively prevents
the passing of a useful command line to WinExec(). This
can be different for other WinAPI functions, though. For
example, calling VirtualProtect() with a this-ptr as
first argument still allows the attacker to mark the memory
of the corresponding counterfeit object as executable. Note
that VirtualProtect() changes the memory access rights
for a memory region pointed to by the first argument. Other
arguments than the first one can be passed as described in
§III-D1 for x64. For x86, all arguments can be passed using
the technique from §III-D2.

For approach W-3 a special type of vfgadget is re-
quired: a virtual function that calls a C-style function
pointer with non-constant arguments. We refer to this type
of vfgagdet as INV-G, an example is given in Figure 8:
the virtual function GuiButton::clicked() invokes the
field GuiButton::callbackClick as C-style function
pointer. This particular vfgadget allows for the invocation of
arbitrary WinAPI functions with at least three attacker-chosen
arguments. Note that, depending on the actual assembly code
of the INV-G, a fourth argument could possibly be passed

ML-ARG-G
stack frame

arg.
esp

before
esp
after

vfgadget(x)

ML-ARG-G
stack frame

arg.
esp

before esp
after

vfgadget(x, x)

ML-ARG-G
stack frame

arg.
esp

before

esp
after

vfgadget()

ML-ARG-G
stack frame

arg.
esp

before

esp
after

vfgadget()

arg.

vfgadget()

1 2 3 4

Fig. 7: Examples for stack layouts before and after invoking vfgadgets under an ML-ARG-G (thiscall calling convention). The
stack grows upwards. 1© vfgadget with one argument: the stack is balanced. 2© vfgadget with two arguments: esp is moved
down. 3© vfgadget without arguments: esp is moved up. 4© two vfgadgets without arguments: two arguments are piled up.

class GuiButton {
private:
 int id;
 void(*callbackClick)(int, int, int);
public:
 void registerCbClick(void(*cb)(int, int, int)) {

callbackClick = cb;
 }

 virtual void clicked(int posX, int posY) {
 callbackClick(id, posX, posY);
 }
};

INV-G

Fig. 8: Example for INV-G: clicked invokes a field of
GuiButton as C-style function pointer.

through r9 for x64. Additional stack-bound arguments for
x86 and x64 may also be controllable depending on the actual
layout of the stack. Calling WinAPI functions through INV-
Gs should generally be the technique of choice as this is more
flexible than approach W-1 and stealthier than W-2. An INV-
G also enables seemingly legit transfers from C++ to C code
(e. g., to libc) in general. On the downside, we found INV-
Gs to be relatively rare overall. For our real-world example
exploits discussed in §V, we could though always select from
multiple suitable ones.

F. Implementing Conditional Branches and Loops

Up to this point, we have described all building blocks
required to practically mount COOP code reuse attacks. As
we do not only aim for COOP to be stealthy, but also to be
Turing complete under realistic conditions (goal G-4), we now
describe the implementation of conditional branches and loops
in COOP.

In COOP, the program counter is the index into the con-
tainer of counterfeit object pointers. The program counter is
incremented for each iteration in the ML-G’s main loop. The
program counter may be a plain integer index as in our exem-
plary ML-G Course::˜Course or may be a more complex
data structure such as an iterator object for a C++ linked list.
Implementing a conditional branch in COOP is generally possi-
ble in two ways: through (i) a conditional increment/decrement
of the program counter or (ii) a conditional manipulation of the
next-in-line counterfeit object pointers in the container. Both

can be implemented given a conditional write vfgadget, which
we refer to as W-COND-G. An example for this vfgadget type
is again Student2::getLatestExam() from Figure 6.
As can be seen in lines 3–7 of the function’s assembly code
in Listing 1, the controllable write operation is only executed
in case [this-ptr + 8] 6= 0. With this semantics, the attacker
can rewrite the COOP program counter or upcoming pointers
to counterfeit objects under the condition that a certain value
is not null. In case the program counter is stored on the stack
(e. g., in the stack frame of the ML-G) and the address of the
stack is unknown, the technique for moving the stack pointer
described in §III-D2a can be used to rewrite it.

Given the ability to conditionally rewrite the program
counter, implementing loops with an exit condition also be-
comes possible.

IV. A FRAMEWORK FOR COUNTERFEIT
OBJECT-ORIENTED PROGRAMMING

Implementing a COOP attack against a given application
is a three step process: (i) identification of vfgadgets, (ii)
implementation of attack semantics using the identified vfgad-
gets, and (iii) arrangement of possibly overlapping counterfeit
objects in a buffer. Since the individual steps are cumbersome
and hard to perform by hand, we created a framework in the
Python scripting language that automates steps (i) and (iii).
This framework greatly facilitated the development of our
example exploits for Internet Explorer and Firefox (see §V). In
the following, we provide an overview of our implementation.

A. Finding Vfgadgets Using Basic Symbolic Execution

For the identification of useful vfgadgets in an application,
our vfgadget searcher relies on binary code only and optionally
debug symbols. Binary x86-64 C++ modules are disassembled
using the popular Interactive Disassembler (IDA) version
6.5. Each virtual function in a C++ module is considered a
potential vfgadget. The searcher statically identifies all vtables
in a C++ module using debug symbols or, if these are not
available, a set of simple but effective heuristics. Akin to other
work [41], [57], our heuristics consider each address-taken
array of function pointers a potential vtable. The searcher
examines all identified virtual functions whose number of
basic blocks does not exceed a certain limit. In practice, we
found it sufficient and convenient to generally only consider

virtual functions with one or three basic blocks as potential
vfgadgets; the only exception being ML-Gs and ML-ARG-
Gs that due to the required loop often consist of more basic
blocks. Using short vfgadgets is favorable as their semantics
are easier to evaluate automatically and they typically exhibit
fewer unwanted side effects. Including long vfgadgtes can,
however, be necessary to fool heuristics-based code reuse
attack detection approaches (see §VI).

The searcher summarizes the semantics of each basic block
in a vfgadget in single static assignment (SSA) form. These
summaries reflect the I/O behavior of a basic block in a com-
pact and easy to analyze form. The searcher relies for this on
the backtracking feature of the METASM binary code analysis
toolkit [27], which performs symbolic execution on the basic
block level. An example of a basic block summary as used by
our searcher was already provided in the listed semantics for
the second basic block of Exam::getWeightedScore()
in §III-D1. To identify useful vfgadgets, the searcher applies
filters on the SSA representation of the potential vfgadgets’
basic blocks. For example, the filter: “left side of assignment
must dereference any argument register; right side must deref-
erence the this-ptr” is useful for identifying 64-bit W-Gs; the
filter: “indirect call independent of [this]” is useful for finding
INV-Gs; and the filter: “looped basic block with an indirect
call dependent on [this] and a non-constant write to [esp-4]”
can in turn be used to find 32-bit ML-ARG-Gs.

B. Aligning Overlapping Objects Using an SMT Solver
Each COOP “program” is defined by the order and posi-

tioning of its counterfeit objects of which each corresponds
to a certain vfgadget. As described in §III-C5, the overlap-
ping of counterfeit objects is an integral concept of COOP;
it enables immediate data flows between vfgadgets through
fields of counterfeit objects. Manually obtaining the align-
ment of overlapping counterfeit objects right on the binary
level is a time-consuming and error-prone task. Hence, we
created a COOP programming environment that automatically,
if possible, correctly aligns all given counterfeit objects in
a fixed-size buffer. In our programming environment, the
“programmer” defines counterfeit objects and labels. A label
may be assigned to any byte within a counterfeit object. When
bytes within different objects are assigned the same label,
the programming environment takes care that these bytes are
mapped to the same location in the final buffer, while assuring
that bytes with different labels are mapped to distinct locations.
Fields without labels are in turn guaranteed to never overlap.
These constraints are often satisfiable, as actual data within
counterfeit objects is typically sparse.

For example, the counterfeit object A may only contain its
vptr (at relative offset +0), an integer at the relative offset
+16 and have the label X for its relative offset +136; the
counterfeit object B may only contain its vptr and have the
same label X for its relative offset +8. Here, the object B fits
comfortably and without conflicts inside A such that B +8
maps to the same byte as A +136.

Our programming environment relies on the Z3 SMT
solver [18] to determine the alignment of all counterfeit objects

within the fixed-size buffer such that, if possible, all label-
related constraints are satisfied. At the baseline, we model
the fixed-size buffer as an array mapping integers indexes to
integers in Z3. To prevent unwanted overlaps, for each byte in
each field, we add a select constraint [19] in Z3 of the form

select(offset-obj + reloffset-byte) = id-field

where offset-obj is an integer variable to be determined by
Z3 and reloffset-byte and id-field are constant integers that
together uniquely identify each byte. For each desired overlap
(e. g., between objects A and B using label X), we add a
constraint of the form

offset-objA + reloffset(A,X) = offset-objB + reloffset(B,X)

where offset-objA and offset-objB are integer variables to
be determined by Z3 and reloffset(A,X) = 136 and
reloffset(B,X) = 8 are constants.

In the programming environment, for convenience, symbolic
pointers to labels can be added to counterfeit objects. Symbolic
pointers are automatically replaced with concrete values once
the offsets of all labels are determined by Z3. This way, mul-
tiple levels of indirection can be implemented conveniently.

V. PROOF OF CONCEPT EXPLOITS

To demonstrate the practical viability of our approach, we
implemented exemplary COOP attacks for Microsoft Internet
Explorer 10 (32-bit and 64-bit) and Mozilla Firefox 36 for
Linux x64. In the following, we discuss different aspects of our
attack codes that we find interesting. We used our framework
described in §IV for the development of all three attack codes.
Each of them fits into 1024 bytes or less. All employed
vfgadgets and their semantics are listed in Tables A.I–A.IV
in the Appendix.

For our Internet Explorer 10 examples, we used a publicly
documented vulnerability related to an integer signedness error
in Internet Explorer 10 [30] as foundation. The vulnerability
allows a malicious website to perform arbitrary reads at any
address and arbitrary writes within a range of approximately
64 pages on the respective heap using JavaScript code. This
gives the attacker many options for hijacking C++ objects
residing on the heap and injecting her own buffer of counterfeit
objects; it also enables the attacker to gain extensive knowl-
edge on the respective address space layout. We successfully
tested our COOP-based exploits for Internet Explorer 10 32-bit
and 64-bit on Windows 7. Note that our choice of Windows 7
as target platform is only for practical reasons; the described
techniques also apply to Windows 8. To demonstrate the
flexibility of COOP, we implemented different attack codes
for 32-bit and 64-bit. Both attack codes could be ported to the
respective other environment without restrictions.

A. Internet Explorer 10 64-bit

Our COOP attack code for 64-bit only relies on vfgadgets
contained in mshtml.dll that can be found in every Internet
Explorer process; it implements the following functionality:
(1) read pointer to kernel32.dll from IAT; (2) calculate pointer

to WinExec() in kernel32.dll; (3) read the current tick count
from the KUSER_SHARED_DATA data structure; (4) if tick
count is odd, launch calc.exe using WinExec() else, execute
alternate execution path and launch mspaint.exe.

The attack code consists of 17 counterfeit objects with
counterfeit vptrs and four counterfeit objects that are pure
data containers. Overall eight different vfgadgets are used;
including one LOAD-R64-G for loading rdx through the
dereferencing of a field that is used five times. The attack
code is based on a ML-G similar to our exemplary one given
in Figure 1 that iterates over a plain array of object pointers.
With four basic blocks, the ML-G is the largest of the eight
vfgadgets. The conditional branch depending on the current
tick count is implemented by overwriting the next-in-line
object pointer such that the ML-G is recursively invoked for
an alternate array of counterfeit object pointers. In summary,
the attack code contains eight overlapping counterfeit objects
and we used 15 different labels to create it in our programming
environment.

1) Attack Variant Using only Vptrs Pointing to the Begin-
ning of Vtables: The described 64-bit attack code relies on
counterfeit vptrs (see §III-C4) that do not necessarily point to
the beginning of existing vtables but to positive or negative
offset from them. As a proof of concept, we developed a
stealthier variant of the attack code above that only uses vptrs
that point to the beginning of existing vtables. Accordingly,
at each vcall site, we were restricted to the set of virtual
functions compatible with the respective fixed vtable index.
Under this constraint, our exploit for the given vulnerability
is still able to launch calc.exe through an invocation of
WinExec(). The attack code consists of only five counterfeit
objects, corresponding to four different vfgadgets (including
the main ML-G) from mshtml.dll. Corresponding to the given
vulnerability, the used main ML-G can be found as fourth
entry in an existing vtable whereas, corresponding to the vcall
site of the ML-G, the other three vfgadgets can be found as
third entries in existing vtables. The task of calculating the
address of WinExec is done in JavaScript code beforehand.

B. Internet Explorer 10 32-bit
Our 32-bit attack code implements the following function-

ality: (1) read pointer to kernel32.dll from IAT; (2) calculate
pointer to WinExec() in kernel32.dll; (3) enter loop that
launches calc.exe using WinExec() n times; (4) finally, enter
an infinite waiting loop such that the browser does not crash.

The attack code does not rely on an array-based ML-
ARG-G (recall that in 32-bit ML-ARG-Gs are used instead
of ML-Gs); instead, it uses a more complex ML-ARG-G
that traverses a linked list of object pointers using a C++
iterator. We discovered this ML-ARG-G in jscript9.dll that is
available in every Internet Explorer process. The ML-ARG-
G consists of four basic blocks and invokes the function
SListBase::Iterator::Next() to get the next object
pointer from a linked list in a loop. The assembly code of the
ML-ARG-G is given in Listing A.1 in the Appendix.

Figure 9 depicts the layout of the linked list: each item in
the linked list consists of one pointer to the next item and

*next

*obj

*next

*obj

*next

*obj

obj0 obj1 obj2

...

...

loop

Fig. 9: Schematic layout of the linked list of object pointers
the ML-ARG-G traverses in the Internet Explorer 10 32-
bit exploit; dashed arrows are examples for dynamic pointer
rewrites for the implementation of conditional branches.

another pointer to the actual object. This layout allows for
the low-overhead implementation of conditional branches and
loops. For example, to implement the loop in our attack code,
we simply made parts of the linked list circular as shown in
Figure 9. Inside the loop in our attack code, a counter within
a counterfeit object is incremented for each iteration. Once
the counter overflows, a W-COND-G rewrites the backward
pointer such that the loop is left and execution proceeds along
another linked list. Our attack code consists of 11 counterfeit
objects, and 11 linked list items of which two point to the same
counterfeit object. Four counterfeit objects overlap and one
counterfeit object overlaps with a linked list item to implement
the conditional rewriting of a next pointer.

This example highlights how powerful linked list-based ML-
Gs/ML-ARG-Gs are in general.

C. Firefox 36.0a1 for Linux x64

To demonstrate the wide applicability of COOP, we also
created an attack code for the GCC-compiled Firefox 36.0a1
for Linux x64. For this proof of concept, we created an
artificial vulnerable application and loaded Firefox’s main
library libxul.so into the address space. Our COOP attack code
here invokes system("/bin/sh"). It is comprised of nine
counterfeit objects (of which two overlap) corresponding to
five different vfgadgets. The attack code reads a pointer to
libc.so from the global offset table (GOT) and calculates the
address of system() from that.

VI. DISCUSSION

We now analyze the properties of COOP, discuss different
defense concepts against it, and review our design goals G-1–
G-4 from §III-A. The effectiveness against COOP of several
existing defenses is discussed afterwards in §VII.

A. Preventing COOP

We observe that the characteristics C-1–C-5 of existing
code reuse attack approaches cannot be relied on to defend
against COOP (goal G-1): in COOP, control flow is only
dispatched to existing and address-taken functions within an
application through existing indirect calls. In addition, COOP
does neither inject new nor alter existing return addresses as
well as other code pointers directly. Instead, only existing vptrs
(i. e., pointers to code pointers) are manipulated or injected.
Technically, depending on the choice of vfgadgets, a COOP

attack may however execute a high ratio of indirect branches
and thus exhibit characteristic C-3. But we note that ML-Gs
(which are used in each COOP attack as central dispatchers)
are legitimate C++ virtual functions whose original purpose
is to invoke many (different) virtual functions in a loop. Any
heuristics attempting to detect COOP based on the frequency
of indirect calls will thus inevitably face the problem of high
numbers of false positive detections. Furthermore, similar to
existing attacks against behavioral-based heuristics [16], [26],
it is straightforward to mix-in long “dummy” vfgadget to
decrease the ratio of indirect branches.

As a result, COOP cannot be effectively prevented by (i) CFI
that does not consider C++ semantics or (ii) detection heuris-
tics relying on the frequency of executed indirect branches and
is unaffected by (iii) shadow call stacks that prevent rogue
returns and (iv) the plain protection of code pointers.

On the other hand, a COOP attack can only be mounted
under the preconditions given in §III-B. Accordingly, COOP
is conceptually thwarted by defense techniques that prevent
the hijacking or injection of C++ objects or conceal necessary
information from the attacker, e. g., by applying ASLR and
preventing information leaks.

1) Generic Defense Techniques: We now discuss the ef-
fectiveness of several other possible defensive approaches
against COOP that do not require knowledge of precise C++
semantics and can thus likely be deployed without analyzing
an application’s source code or recompiling it.

a) Restricting the Set of Legitimate API Invocation Sites:
A straightforward approach to tame COOP attacks is to restrict
the set of code locations that may invoke certain sensitive
library functions. For example, by means of binary rewriting
it is possible to ensure that certain WinAPI functions may only
be invoked through constant indirect branches that read from a
module’s IAT (see CCFIR [58]). In the best case, this approach
could effectively prevent the API calling techniques W-2 and
W-3 described in §III-E. However, it is also common for
benign code to invoke repeatedly used or dynamically resolved
WinAPI functions through non-constant indirect branches like
call rsi. Accordingly, in practice, it can be difficult to
precisely identify the set of a module’s legitimate invocation
sites for a given WinAPI function. We also remark that even
without immediate access to WinAPI functions or systems
calls COOP is still potentially dangerous, because, for example,
it could be used to manipulate or leak critical data.

b) Monitoring of the Stack Pointer: In 64-bit COOP,
the stack pointer is virtually never moved in an irregular
or unusual manner. For the 32-bit thiscall calling convention
though, this can be hard to avoid as long as not only vfgadgets
with the same fixed number of arguments are invoked. This
is a potential weakness that can reveal a COOP attack on
Windows x86 to a C++-unaware defender that closely observes
the stack pointer. However, we note that it may be difficult to
always distinguish this behavior from the benign invocation of
functions in the cdecl calling convention.

c) Fine-grained Code Randomization: COOP is con-
ceptually resilient against the fine-grained randomization of

locations of binary code, e. g., on function, basic block, or
instruction level. This is because in a COOP attack, other than
for example in a ROP attack, knowing the exact locations
of certain instruction sequences is not necessary but rather
only the locations of certain vtables. Moreover, in COOP, the
attacker mostly misuses the actual high-level semantics of ex-
isting code. Most vfgadget types, other than ROP gadgets, are
thus likely to be unaffected by semantics-preserving rewriting
of binary code. Only LOAD-R64-Gs that are used to load x64
argument registers could be broken by such means. However,
the attacker could probably oftentimes fall back to x86-style
ML-ARG-G-based COOP in such a case.

2) C++ Semantics-aware Defense Techniques: We observe
that the control flow and data flow in a COOP attack are
similar to those of benign C++ code (goal G-2). However,
there are certain deviations that can be observed by C++-aware
defenders. We now discuss several corresponding defenses.

a) Verification of Vptrs: In basic COOP, vptrs of coun-
terfeit objects point to existing vtables but not necessarily to
their beginning. This allows for the implementation of viable
defenses against COOP when all legitimate vcall sites and
vtables in an application are known and accordingly each
vptr access can be augmented with sanity checks. Such a
defense can be implemented without access to source code by
means of static binary code rewriting as concurrently shown
by Prakash et al. [41]. While such a defense significantly
shrinks the available vfgadget space, our exploit code from
§V-A1 demonstrates that COOP-based attacks are still possible,
at least for large C++ target applications.

Ultimately, a defender needs to know the set of allowed
vtables for each vcall site in an application to reliably prevent
malicious COOP control flow (or at least needs to arrive at
an approximation that sufficiently shrinks the vfgadget space).
For this, the defender needs (i) to infer the global hierarchy
of C++ classes with virtual functions and (ii) to determine
the C++ class (within that hierarchy) that corresponds to each
vcall site. Both can easily be achieved when source code is
available. Without source code, given only binary code and
possibly debug symbols or RTTI metadata2, the former can
be achieved with reasonable precision while, to the best of
our knowledge, the latter is generally considered to be hard
for larger applications by means of static analysis [20], [21],
[24], [41].

b) Monitoring of Data Flow: COOP also exhibits a
range of data-flow patterns that can be revealing when C++
semantics are considered. Probably foremost, in basic COOP,
vfgadgtes with varying number of arguments are invoked
from the same vcall site. This can be detected when the
number of arguments expected by each virtual function in an
application is known. While trivial with source code, deriving
this information from binary code can be challenging [41].
An even stronger (but also likely costlier) protection could be
created by considering the actual types of arguments.

2Runtime Type Information (RTTI) metadata is often linked into C++
applications for various purposes. RTTI includes the literal names of classes
and the precise class hierarchy.

In a COOP attack, counterfeit objects are not created and
initialized by legitimate C++ constructors, but are injected by
the attacker. Further, the concept of overlapping objects creates
unusual data flows. To detect this, the defender needs to be
aware of the life-cycle of C++ objects in an application. This
requires knowledge of the whereabouts of (possibly inlined)
constructors and destructors of classes with virtual functions.

c) Fine-grained Randomization of C++ Data Structures:
In COOP, the layout of each counterfeit object needs to be
byte-compatible with the semantics of its vfgadget. Accord-
ingly, randomizing C++ object layouts on application start-
up, e. g., by inserting randomly sized paddings between the
fields of C++ objects, can hamper COOP. Also, the fine-grained
randomization of the positions or structures of vtables could
be a viable defense against COOP.

We conclude that COOP can be mitigated by a range of
means that do not require knowledge of C++ semantics. But
we regard it as vital to consider and to enforce C++ semantics
to reliably prevent COOP. Doing so by means of static binary
analysis and rewriting only is challenging as the compilation
of C++ code is in most cases a lossy process. For example, in
binary code, distinguishing the invocation of a virtual function
from the invocation of a C-style function pointer that happens
to be stored in a read-only table can be difficult. Hence,
unambiguously recovering essential high-level C++ semantics
afterwards can be hard or even impossible. In fact, as we
discuss in more detail in §VII, we know of no binary-only
CFI solution that considers C++ semantics precisely enough
to fully protect against COOP.

B. Applicability and Turing Completeness

We have shown that COOP is applicable to popular C++
applications on different operating systems and hardware
architectures (goal G-3). Naturally, a COOP attack can only
be mounted in case at least a minimum set of vfgadgets is
available. We did not conduct a quantitative analysis on the
general frequency of usable vfgadgets in C++ applications: de-
termining the actual usefulness of potential vfgadgets in an au-
tomated way is challenging and we leave this for future work.
In general, we could choose from many useful vfgadgets in the
libraries mshtml.dll (around 20 MB) and libxul.so (around 60
MB) and found the basic vfgadget types ARITH-G, W-G, R-
G, LOAD-R64-G, and W-SA-G to be common even in smaller
binaries. The availability of ML-Gs/ML-ARG-Gs is vital to ev-
ery COOP attack. While sparser than the more basic types, we
found well-usable representatives, e. g., in Microsoft’s standard
C/C++ runtime libraries msvcr120.dll and msvcp120.dll (both
smaller than 1 MB; dynamically linked to many C and C++
applications on Windows): the virtual function Scheduler-
Base::CancelAllContexts() with five basic blocks in
msvcr120.dll is a linked list-based ML-G and the virtual func-
tion propagator_block::unlink_sources() with
eight basic blocks in msvcp120.dll is an array-based ML-
ARG-G. Interestingly, this particular ML-ARG-G is also de-
fined in Visual Studio’s standard header file agents.h. In
msvcr120.dll, we also found the INV-G Cancellation-

TokenRegistration_TaskProc::_Exec() that con-
sists of one basic block and is suitable for x86 and x64 COOP.

Given the vfgadget types defined in Table I, COOP has the
same expressiveness as unrestricted ROP [46]. Hence, it allows
for the implementation of a Turing machine (goal G-4) based
on memory load/store, arithmetic, and branches. In particular,
the COOP examples in §V show that complex semantics like
loops can be implemented under realistic conditions.

VII. COOP AND EXISTING DEFENSES

Based on the discussions in §VI, we now assess a selection
of contemporary defenses against code reuse attacks and
discuss whether they are vulnerable to COOP in our adversary
model. A summary of our assessment is given in Table II.

A. Generic CFI

We first discuss CFI approaches that do not consider C++
semantics for the derivation of the CFG that should be
enforced. We observe that all of them are vulnerable to COOP.

The basic implementation of the original CFI work by
Abadi et al. [1] instruments binary code such that indirect
calls may only go to address-taken functions (coarse-grained
CFI). This scheme and a closely related one [59] have re-
cently been shown to be vulnerable to advanced ROP-based
attacks [16], [25]. Abadi et al. also proposed to combine their
basic implementation with a shadow call stack that prevents
call/return mismatches. This extension effectively mitigates
these advanced ROP-based attacks while, as discussed in §VI,
it does not prohibit COOP.

Davi et al. described a hardware-assisted CFI solution for
embedded systems that incorporates a shadow call stack and
a certain set of runtime heuristics [15]. However, the indirect
call policy only validates whether an indirect call targets a
valid function start. As COOP only invokes entire functions, it
can bypass this hardware-based CFI mechanism.

CCFIR [58], a CFI approach for Windows x86 binaries,
uses a randomly arranged “springboard” to dispatch all indirect
branches within a code module. On the baseline, CCFIR
allows indirect calls and jumps to target all address-taken
locations in a binary and restricts returns to certain call-
preceded locations. One of CCFIR’s core assumptions is that
the attacker is unable to “[...] selectively reveal [s]pringboard
stub addresses of their choice” [58]. Göktaş et al. recently
showed that ROP-based bypasses for CCFIR are possible given
an up-front information leak from the springboard [25]. In con-
trast, COOP breaks CCFIR without violating its assumptions:
the springboard technique is ineffective against COOP as we
do not inject code pointers but only vptrs (pointers to code
pointers). CCFIR though also ensures that sensitive WinAPI
functions (e. g., CreateFile() or WinExec()) can only
be invoked through constant indirect branches. However, as
examined in §VI-A1a, this measure does not prevent dangerous
attacks and can probably also be sidestepped in practice. In
any case, COOP can be used in the first stage of an attack to
selectively readout the springboard.

Many system modules in the Microsoft Windows 10 Tech-
nical Preview are compiled with Control Flow Guard (CFG),

Category Scheme Realization Effective against COOP ?

Generic CFI

Original CFI + shadow call stack [1] Binary + debug symbols 7
CCFIR [58] Binary 7
O-CFI [54] Binary 7
SW-HW Co-Design [15] Source code + specialized hardware 7
Windows 10 Tech. Preview CFG Source code 7
LLVM IFCC [52] Source code ?

C++-aware CFI

—various— [5], [29], [52] Source code 333
T-VIP [24] Binary 7
VTint [57] Binary 7
vfGuard [41] Binary ?

Heuristics-based detection
—various— [14], [40], [56] CPU debugging/performance monitoring features 777
HDROP [60] CPU performance monitoring counters 7
Microsoft EMET 5 [34] WinAPI function hooking 7

Code hiding, shuffling, or rewriting
STIR [55] Binary 7
G-Free [38] Source code 7
XnR [7] Binary / source code ?

Memory safety —various— [4]–[6], [13], [36], [45] Mostly source code (333) - see §VII-E
CPI/CPS [31] Source code 3/7

TABLE II: Overview of the effectiveness of a selection of code reuse defenses and memory safety techniques (below double
line) against COOP; 3 indicates effective protection and 7 indicates vulnerability; ? indicates at least partial protection.

a simple form of CFI. We analyzed the proprietary implemen-
tation of Microsoft CFG. In summary, Microsoft CFG ensures
that protected indirect calls may only go to a certain set of
targets. This set is specified in a module’s PE header [42].
If multiple CFG-enabled modules reside in a process, their
sets are merged. For system libraries (written in C), this
set is mostly comprised of exported functions. For the C++
mshtml.dll we discovered that all virtual functions are
contained in the set and can thus be invoked from any indirect
call site. Accordingly, Microsoft CFG in its current form does
not prevent COOP, but also likely not advanced ROP-based
attacks like the one by Göktaş et al.

Tice et al. recently described two variants of Forward-Edge
CFI for the GCC and LLVM compiler suites [52] that solely
aim at constraining indirect calls and jumps but not returns. As
such, taken for itself, forward-edge CFI does not prevent ROP
in any way. One of the proposed variants is the C++-aware
virtual table verification (VTV) technique for GCC. It tightly
restricts the targets of each vcall site according to the C++
class hierarchy and thus prevents COOP. VTV is available
in mainline GCC since version 4.9.0. However, the variant
for LLVM called indirect function-call checks (IFCC) “[...]
does not depend on the details of C++ or other high-level
languages” [52]. Instead, each indirect call site is associated
with a set of valid target functions. A target is valid if (i) it is
address-taken and (ii) its signature is compatible with the call
site. Tice et al. discuss two definitions for the compatibility of
function signatures for IFCC: (i) all signatures are compatible
or (ii) signatures with the same number of arguments are
compatible. We observe that the former configuration does not
prevent COOP, whereas the latter can still allow for powerful
COOP-based attacks in practice as discussed in §VI-A2b.

B. C++-aware CFI

As discussed in §VI, COOP’s control flow can be reliably
prevented when precise C++ semantics are considered from
source code. Accordingly, various source code-based CFI so-

lutions exist that prevent COOP, e. g., GCC VTV as described
above, Safedispatch [29], or WIT [5].

Recently and concurrently, three C++-aware CFI approaches
for legacy binary code have been proposed: T-VIP [24],
vfGuard [41], and VTint [57]. They follow a similar basic
approach:

1) identification of vcall sites and vtables (only vfGuard and
VTint) using heuristics and static data-flow analysis

2) instrumentation of vcall sites to restrict the set of allowed
vtables.

T-VIP ensures at each instrumented vcall site that the vptr
points to read-only memory. Optionally, it also checks if a
random entry in the respective vtable points to read-only
memory. Similarly, VTint copies all identified vtables into
a new read-only section and instruments each vcall site to
check if the vptr points into that section. Both effectively
prevent attacks based on the injection of fake vtables, but as
in a COOP attack only actual vtables are referenced, they do
not prevent COOP. VfGuard instruments vcall sites to check
if the vptr points to the beginning of any known vtable. As
discussed §VI-A2a, such a policy restricts the set of available
vfgadgets significantly, but still cannot reliably prevent COOP.
VfGuard also checks the compatibility of calling conventions
and consistency of the this-ptr at vcall sites, but this does
not affect COOP. Nonetheless, we consider vfGuard to be one
of the strongest available binary-only defenses against COOP.
VfGuard significantly constraints attackers and we expect it to
be a reliable defense in at least some attack scenarios, e. g.,
for small to medium-sized x86 applications.

C. Heuristics-based Detection

Microsoft EMET [34] is probably the most widely deployed
exploit mitigation tool. Among others, it implements different
heuristics-based strategies for the detection of ROP [23].
Additionally, several related heuristics-based defenses have
been proposed that utilize certain debugging features avail-
able in modern x86-64 CPUs [14], [40], [56]. All of these
defenses have recently been shown to be unable to detect more

advanced ROP-based attacks [11], [16], [26], [43]. Similarly,
the HDROP [60] defense utilizes the performance monitoring
counters of modern x86-64 CPUs to detect ROP-based attacks.
The approach relies on the observation that a CPU’s internal
branch prediction typically fails in abnormal ways during the
execution of common code reuse attacks.

As discussed in §VI-A, such heuristics are unlikely to be
practically applicable to COOP and we can in fact confirm
that our Internet Explorer exploits (§V-A and §V-B) are not
detected by EMET version 5.

D. Code Hiding, Shuffling, or Rewriting

STIR [55] is a binary-only defense approach that randomly
reorders basic blocks in an application on each start-up to
make the whereabouts of gadgets unknown to an attacker—
even if she has access to the exact same binary. As discussed
in §VI-A1c, approaches like this do conceptually not affect
our attack, as COOP only uses entire functions as vfgadgets
and only knowledge on the whereabouts of vtables is required.
This applies also to the recently proposed O-CFI approach [54]
that combines the STIR concept with coarse-grained CFI.

Execute-no-Read (XnR) [7] is a proposed defense against
so-called JIT-ROP [49] attacks that prevents code pages from
being read. We note that, depending on the concrete scenario,
a corresponding JIT-COOP attack could not always be thwarted
by such measures as it can suffice to readout vtables and
possibly RTTI metadata (which contains the literal names of
classes) from data sections and apply pattern matching to
identify the addresses of the vtables of interest.

G-Free [38] is an extension to the GCC compiler. G-
Free produces x86 native code that (largely) does not contain
unaligned indirect branches. Additionally, it aims to prevent
attackers from misusing aligned indirect branches: return
addresses on the stack are encrypted/decrypted on a function’s
entry/exit and a “cookie” mechanism is used to ensure that
indirect jump/call instructions may only be reached through
their respective function’s entry. While effective even against
many advanced ROP-based attacks [11], [16], [25], [26], [43],
G-Free does not affect COOP.

E. Memory Safety

Systems that provide forms of memory safety for C/C++
applications [4]–[6], [13], [31], [36], [45] can constitute strong
defenses against control-flow hijacking attacks in general. As
our adversary model explicitly foresees an initial memory
corruption and information leak (see §III-B), we do not explore
the defensive strengths of these systems in detail. Instead, we
exemplarily discuss two recent approaches in the following.

Kuznetsov et al. proposed Code-Pointer Integrity (CPI) [31]
as a low-overhead control-flow hijacking protection for C/C++.
On the baseline, CPI guarantees the spatial and temporal
integrity of code pointers and, recursively, that of pointers to
code pointers. As in C++ applications typically many pointers
to code pointers exist (i. e., each object’s vptr), CPI can
still impose a significant overhead there. As a consequence,
Kuznetsov et al. also proposed Code-Pointer Separation (CPS)
as a less expensive variant of CPI that specifically targets C++.

In CPS, sensitive pointers are not protected recursively, but it
is still enforced that “[...] (i) code pointers can only be stored
to or modified in memory by code pointer store instructions,
and (ii) code pointers can only be loaded by code pointer
load instructions from memory locations to which previously
a code pointer store instruction stored a value” [31] where
code pointer load/store instructions are fixed at compile time.
Kuznetsov et al. argue that the protection offered by CPS
could be sufficient in practice as it conceptually prevents recent
advanced ROP-based attacks [11], [16], [26]. We observe
that CPS does not prevent our attack, because COOP does
not require the injection or manipulation of code pointers.
In the presence of CPS, it is though likely hard to invoke
library functions not imported by an application. But we
note that almost all applications import critical functions. The
invocation of library functions through an INV-G could also
be complicated or impossible in the presence of CPS. This
is however not a hurdle, because, as CPS does not consider
C++ semantics, imported library functions can always easily
be called without taking the detour through an INV-G as
described in §III-E in approach W-2.

VIII. RELATED WORK

Since we covered related work throughout the paper, we
only briefly review contributions similar to ours in this section.
Closely related to our work, several advanced ROP-based
attacks were recently demonstrated [11], [16], [25], [26],
[43] that bypassed certain coarse-grained CFI systems [1],
[58], [59] or heuristics-based systems [14], [23], [40], [56].
However, to the best of our knowledge, we are the first
to demonstrate bypasses of the latest defenses CPS [31],
T-VIP [24], vfGuard [41], and VTint [57] and the coarse-
grained CFI + shadow call stack [1] concept. We also regard
COOP’s tolerance against the fine-grained rewriting, shuffling,
and hiding of executable code as unique.

Bosman and Bos presented Sigreturn Oriented Program-
ming (SROP) [10], a distinct code reuse attack approach
that misuses UNIX signals. SROP is Turing complete and in
contrast to ROP does not chain short chunks of instructions
sequences. In SROP, the UNIX system call sigreturn is re-
peatedly invoked on an attacker supplied signal frames lying
on the stack. Accordingly, as prerequisites, the attacker needs
to control the stack and needs to be able to divert the control
flow such that sigreturn is invoked. SROP was not specifically
designed to circumvent modern protection techniques, but
rather as an easy-to-use and portable alternative to ROP and
for implementing stealthy backdoors.

Tran et al. demonstrated that Turing complete return-to-libc
attacks are possible [53]. In their described attack, a thread’s
stack is prepared in such a way that certain functions from
libc such as longjmp() or wordexp() are subsequently
executed for varying arguments, where each function returns
to the entry point of its successor. At its core, their approach
shares similarities with ours. However, it can conceptually
not be used to bypass modern CFI systems. Skowyra et
al. demonstrated how the attack by Tran et al. can also be
implemented using other libraries than libc [47].

IX. CONCLUSION

In this paper, we introduced counterfeit object-oriented
programming (COOP), a novel code reuse attack technique to
bypass almost all CFI solutions and many other defenses that
do not consider object-oriented C++ semantics. We discussed
the specifics of object-oriented programming and explained
the technical details behind COOP. We believe that our results
contribute to the ongoing research on designing practical and
secure defenses against control-flow hijacking attacks, a severe
threat that has been around for more than two decades. Our
basic insight that higher-level programming language-specific
semantics need to be taken into account is a valuable guide for
the design and implementation of future defenses. In particular,
our results demand for a rethinking in the assessment of
defenses that rely solely on binary code.

ACKNOWLEDGMENT

We thank the anonymous reviewers and Herbert Bos for
their constructive comments that guided the final version of
this paper. This work has been supported by several organiza-
tion: the German Federal Ministry of Education and Research
(BMBF) under support code 16BP12302 (EUREKA project
SASER), the German Science Foundation as part of project
S2 within the CRC 1119 CROSSING, and the European
Unions Seventh Framework Programme under grant agreement
No. 609611, PRACTICE project.

REFERENCES

[1] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-flow integrity.
In Proceedings of ACM Conference on Computer and Communications
Security (CCS), 2005.

[2] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. A theory of
secure control-flow. In International Conference on Formal Engineering
Methods (ICFEM), pages 111–124, 2005.

[3] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-flow
integrity: Principles, implementations, and applications. ACM Trans-
actions on Information and System Security (TISSEC), 13(1), 2009.

[4] P. Akritidis. Cling: A memory allocator to mitigate dangling pointers.
In USENIX Security Symposium, 2010.

[5] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro. Preventing
memory error exploits with WIT. In IEEE Symposium on Security and
Privacy, 2008.

[6] P. Akritidis, M. Costa, M. Castro, and S. Hand. Baggy bounds checking:
An efficient and backwards-compatible defense against out-of-bounds
errors. In USENIX Security Symposium, 2009.

[7] M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Nürnberger, and J. Pewny.
You can run but you can’t read: Preventing disclosure exploits in
executable code. In Proceedings of ACM Conference on Computer and
Communications Security (CCS), 2014.

[8] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazieres, and D. Boneh.
Hacking blind. In IEEE Symposium on Security and Privacy, 2014.

[9] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-oriented
programming: A new class of code-reuse attack. In ACM Symposium on
Information, Computer and Communications Security (ASIACCS), 2011.

[10] E. Bosman and H. Bos. Framing signals—a return to portable shellcode.
In IEEE Symposium on Security and Privacy, 2014.

[11] N. Carlini and D. Wagner. ROP is still dangerous: Breaking modern
defenses. In USENIX Security Symposium, 2014.

[12] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham,
and M. Winandy. Return-oriented programming without returns. In
Proceedings of ACM Conference on Computer and Communications
Security (CCS), 2010.

[13] X. Chen, A. Slowinska, D. Andriesse, H. Bos, and C. Giuffrida.
StackArmor: Comprehensive protection from stack-based memory error
vulnerabilities for binaries. In Symposium on Network and Distributed
System Security (NDSS), 2015.

[14] Y. Cheng, Z. Zhou, M. Yu, X. Ding, and R. H. Deng. ROPecker: A
generic and practical approach for defending against ROP attacks. In
Symposium on Network and Distributed System Security (NDSS), 2014.

[15] L. Davi, P. Koeberl, and A.-R. Sadeghi. Hardware-assisted fine-grained
control-flow integrity: Towards efficient protection of embedded systems
against software exploitation. In DAC, 2014.

[16] L. Davi, D. Lehmann, A.-R. Sadeghi, and F. Monrose. Stitching the
gadgets: On the ineffectiveness of coarse-grained control-flow integrity
protection. In USENIX Security Symposium, 2014.

[17] L. Davi, A.-R. Sadeghi, and M. Winandy. ROPdefender: A detection
tool to defend against return-oriented programming attacks. In ACM
Symposium on Information, Computer and Communications Security
(ASIACCS), 2011.

[18] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In Conference
on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), 2008.

[19] L. De Moura and N. Bjørner. Generalized, efficient array decision
procedures. In Formal Methods in Computer Aided Design (FMCAD),
2009.

[20] D. Dewey and J. T. Giffin. Static detection of C++ vtable escape
vulnerabilities in binary code. In Symposium on Network and Distributed
System Security (NDSS), 2012.

[21] A. Fokin, E. Derevenetc, A. Chernov, and K. Troshina. SmartDec:
Approaching C++ decompilation. In Working Conference on Reverse
Engineering (WCRE), 2011.

[22] M. Frantzen and M. Shuey. StackGhost: Hardware facilitated stack
protection. In USENIX Security Symposium, 2001.

[23] I. Fratric. Runtime Prevention of Return-Oriented Programming Attacks.
http://ropguard.googlecode.com/svn-history/r2/trunk/doc/ropguard.pdf.

[24] R. Gawlik and T. Holz. Towards automated integrity protection of C++
virtual function tables in binary programs. In Anual Computer Security
Applications Conference (ACSAC), 2014.

[25] E. Göktaş, E. Athanasopoulos, H. Bos, and G. Portokalidis. Out of
control: Overcoming control-flow integrity. In IEEE Symposium on
Security and Privacy, 2014.

[26] E. Göktaş, E. Athanasopoulos, M. Polychronakis, H. Bos, and G. Por-
tokalidis. Size does matter: Why using gadget-chain length to prevent
code-reuse attacks is hard. In USENIX Security Symposium, 2014.

[27] Y. Guillot and A. Gazet. Automatic binary deobfuscation. Journal in
Comp. Virology, 2010.

[28] R. Hund, C. Willems, and T. Holz. Practical timing side channel
attacks against kernel space ASLR. In IEEE Symposium on Security
and Privacy, 2013.

[29] D. Jang, Z. Tatlock, and S. Lerner. SAFEDISPATCH: Securing C++
virtual calls from memory corruption attacks. In Symposium on Network
and Distributed System Security (NDSS), 2014.

[30] N. Joly. Advanced exploitation of Internet Explorer 10 / Windows
8 overflow (Pwn2Own 2013). http://www.vupen.com/blog/
20130522.Advanced Exploitation of IE10 Windows8 Pwn2Own
2013.php, 2013.

[31] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song.
Code-pointer integrity. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2014.

[32] M. Matz, J. Hubicka, A. Jaeger, and M. Mitchell. System V Application
Binary Interface: AMD64 architecture processor supplement. http://x86-
64.org/documentation/abi.pdf, 2013.

[33] Microsoft. Data Execution Prevention (DEP). http:
//support.microsoft.com/kb/875352/EN-US/, 2006.

[34] Microsoft Corp. Enhanced mitigation experience toolkit (EMET) 5.1.
http://technet.microsoft.com/en-us/security/jj653751, November 2014.

[35] Microsoft Developer Network. Argument passing and naming conven-
tions. http://msdn.microsoft.com/en-us/library/984x0h58.aspx.

[36] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic. CETS:
Compiler enforced temporal safety for C. In International Symposium
on Memory Management, 2010.

[37] Nergal. The advanced return-into-lib(c) exploits: PaX case study. http:
//phrack.org/issues/58/4.html, 2001.

[38] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda. G-Free:
Defeating return-oriented programming through gadget-less binaries. In
Anual Computer Security Applications Conference (ACSAC), 2010.

[39] V. Pappas, M. Polychronakis, and A. D. Keromytis. Smashing the
gadgets: Hindering return-oriented programming using in-place code
randomization. In IEEE Symposium on Security and Privacy, 2012.

http://ropguard.googlecode.com/svn-history/r2/trunk/doc/ropguard.pdf
http://www.vupen.com/blog/20130522.Advanced_Exploitation_of_IE10_Windows8_Pwn2Own_2013.php
http://www.vupen.com/blog/20130522.Advanced_Exploitation_of_IE10_Windows8_Pwn2Own_2013.php
http://www.vupen.com/blog/20130522.Advanced_Exploitation_of_IE10_Windows8_Pwn2Own_2013.php
http://x86-64.org/documentation/abi.pdf
http://x86-64.org/documentation/abi.pdf
http://support.microsoft.com/kb/875352/EN-US/
http://support.microsoft.com/kb/875352/EN-US/
http://technet.microsoft.com/en-us/security/jj653751
http://msdn.microsoft.com/en-us/library/984x0h58.aspx
http://phrack.org/issues/58/4.html
http://phrack.org/issues/58/4.html

[40] V. Pappas, M. Polychronakis, and A. D. Keromytis. Transparent ROP
exploit mitigation using indirect branch tracing. In USENIX Security
Symposium, 2013.

[41] A. Prakash, X. Hu, and H. Yin. vfGuard: Strict protection for virtual
function calls in COTS C++ binaries. In Symposium on Network and
Distributed System Security (NDSS), 2015.

[42] M. Russinovich, D. A. Solomon, and A. Ionescu. Windows Internals,
Part 1. Microsoft Press, 6th edition, 2012.

[43] F. Schuster, T. Tendyck, J. Pewny, A. Maaß, M. Steegmanns, M. Contag,
and T. Holz. Evaluating the effectiveness of current anti-ROP defenses.
In Symposium on Research in Attacks, Intrusions and Defenses (RAID),
2014.

[44] J. Seibert, H. Okhravi, and E. Söderström. Information leaks without
memory disclosures: Remote side channel attacks on diversified code.
In Proceedings of ACM Conference on Computer and Communications
Security (CCS), 2014.

[45] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. Address-
Sanitizer: A fast address sanity checker. In USENIX Annual Technical
Conference, 2012.

[46] H. Shacham. The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86). In Proceedings of ACM
Conference on Computer and Communications Security (CCS), 2007.

[47] R. Skowyra, K. Casteel, H. Okhravi, N. Zeldovich, and W. Streilein.
Systematic analysis of defenses against return-oriented programming.
In Symposium on Research in Attacks, Intrusions and Defenses (RAID),
2013.

[48] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.-
R. Sadeghi. Just-in-time code reuse: On the effectiveness of fine-grained
address space layout randomization. In IEEE Symposium on Security
and Privacy, 2013.

[49] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.-
R. Sadeghi. Just-in-time code reuse: On the effectiveness of fine-grained
address space layout randomization. In IEEE Symposium on Security
and Privacy, 2013.

[50] B. Stroustrup. The C++ Programming Language, 4th Edition. Addison-
Wesley, 4th edition, 2013.

[51] L. Szekeres, M. Payer, T. Wei, and D. Song. Sok: Eternal war in memory.
In IEEE Symposium on Security and Privacy, 2013.

[52] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson,
L. Lozano, and G. Pike. Enforcing forward-edge control-flow integrity
in GCC & LLVM. In USENIX Security Symposium, 2014.

[53] M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh, and P. Ning. On
the expressiveness of return-into-libc attacks. In Symposium on Research
in Attacks, Intrusions and Defenses (RAID), 2011.

[54] M. Vishwath, P. Larsen, S. Brunthaler, K. W. Hamlen, and M. Franz.
Opaque control-flow integrity. In Symposium on Network and Dis-
tributed System Security (NDSS), 2015.

[55] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary stirring:
Self-randomizing instruction addresses of legacy x86 binary code. In
Proceedings of ACM Conference on Computer and Communications
Security (CCS), pages 157–168, 2012.

[56] Y. Xia, Y. Liu, H. Chen, and B. Zang. CFIMon: Detecting violation
of control flow integrity using performance counters. In IEEE/IFIP
Conference on Dependable Systems and Networks (DSN), 2012.

[57] C. Zhang, C. Song, K. Z. Chen, Z. Chen, and D. Song. VTint:
Defending virtual function tables’ integrity. In Symposium on Network
and Distributed System Security (NDSS), 2015.

[58] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou. Practical control flow integrity and randomization
for binary executables. In IEEE Symposium on Security and Privacy,
2013.

[59] M. Zhang and R. Sekar. Control flow integrity for COTS binaries. In
USENIX Security Symposium, 2013.

[60] H. Zhou, X. Wu, W. Shi, J. Yuan, and B. Liang. HDROP: Detecting ROP
attacks using performance monitoring counters. In Information Security
Practice and Experience. Springer International Publishing, 2014.

APPENDIX

mov edi, edi
push ebp
mov ebp, esp
push ecx
push ecx
push esi
mov esi, ecx
lea eax, [esi+3ACh]
; -- inlined constructor of iterator --
mov [ebp+iterator.end], eax
mov [ebp+iterator.current], eax
; --

loop:
lea ecx, [ebp+iterator]
call SListBase::Iterator::Next()
test al, al
jnz end

mov eax, [ebp+iterator.current]
push [esi+140h] ; push argument field
mov ecx, [eax+4] ; read object pointer from iterator
mov eax, [ecx]
call [eax+4] ; call 2nd virtual function
jmp loop

end:
pop esi
mov esp, ebp
pop ebp
ret

Listing A.1: Assembly code of ML-ARG-G in jscrip9.dll
version 10.0.9200.16521 used in exemplary Internet Explorer
10 32-bit exploit: a linked list of object pointers is traversed; a
virtual function with one argument is invoked on each object.

Symbol name of vfgadget (mshtml.dll Win. 7 64-bit) # in attack code Vfgadget type Function
CExtendedTagNamespace::Passivate 1, 9b ML-G array-based main loop
CCircularPositionFormatFieldIterator::Next 2, 5, 7, 9a, 10b LOAD-R64-G load rdx from dereferenced field
XHDC::SetHighQualityScalingAllowed 3 ARITH-G store rdx&1
CWigglyShape::OffsetShape 4 LOAD-R64-G load r9 from field
CStyleSheetArrayVarEnumerator::MoveNextInternal 6 LOAD-R64-G load r8 from field
CDataCache<class CBoxShadow>::InitData 8 W-COND-G write r8 to [rdx] if r9 is not zero
CRectShape::OffsetShape 10a, 11b ARITH-G add [rdx] to field
Ptls6::CLsBlockObject::Display 11a, 12b INV-G invoke field as function pointer

TABLE A.I: Vfgadgets in mshtml.dll 10.0.9200.16521 used in exemplary Internet Explorer 10 64-bit exploit (§V-A); execution
splits into paths a and b after index 8.

Symbol name of vfgadget (mshtml.dll Win. 7 64-bit) # in attack code Vfgadget type Function
CExtendedTagNamespace::Passivate 1 ML-G array-based main loop
CMarkupPageLayout::IsTopLayoutDirty 2, 4 LOAD-R64-G load edx from field
HtmlLayout::GridBoxTrackCollection::GetRangeTrackNumber 3 ARITH-G r8 = 2 · rdx
CAnimatedCacheEntryTyped<float>::UpdateValue 4 INV-G invoke field from argument as

function pointer

TABLE A.II: Vfgadgets in mshtml.dll 10.0.9200.16521 used in exemplary Internet Explorer 10 64-bit exploit that only uses
vptrs pointing to the beginning of existing vtables (§V-A1)

Symbol name of vfgadget # in attack code Vfgadget type Function
jscript9!ThreadContext::
ResolveExternalWeakReferencedObjects

1 ML-ARG-G linked list-based main loop

CDataTransfer::Proxy 2 W-SA-G write deref. field to scratch area
CDCompSwapChainLayer::SetDesiredSize 3 R-G load field from scratch area
CDCompSurfaceTargetSurface::GetOrigin 4 ARITH-G and W-SA-G write summation of two fields to scratch area
CDCompLayerManager::
SetAnimationCurveToken

5 R-G load field from scratch area

HtmlLayout::SvgBoxBuilder::
PrepareBoxForDisplay

loop entry: 6, 11 W-G rewrite argument field

CDXTargetSurface::OnEndDraw 7, 8 MOVE-SP-G move stack pointer up
ieframe!Microsoft::WRL::
Callback::ComObject::Invoke

9 INV-G invoke function pointer with 2 arguments

CMarkupPageLayout::AddLayoutTaskOwnerRef 10 ARITH-G increment field
Ptls6::CLsDnodeNonTextObject::
SetDurFmtCore

12 W-COND-G conditionally write argument to field; rewrites
linked list; resumes at loop entry or loop exit

CDispRecalcContext::
OnBeforeDestroyInitialIntersectionEntry

loop exit NOP nop; loops to self

TABLE A.III: Vfgadgets used in exemplary Internet Explorer 10 32-bit exploit (§V-B); vfgadgets taken from mshtml.dll (if
not marked differently), jscript9.dll, or ieframe.dll version 10.0.9200.16521.

Symbol name of vfgadget (libxul.so Linux 64-bit) # in attack code Vfgadget type Function
nsMultiplexInputStream::Close 1 ML-G array-based main loop
mozilla::a11y::xpcAccessibleGeneric::˜xpcAccessibleGeneric
and
js::jit::MVariadicInstruction::getOperand

2, 4 LOAD-R64-G load rsi from memory

nsDisplayItemGenericGeometry::MoveBy 3 ARITH-G add [rsi] to field
ProfileSaveEvent::AddSubProfile 5 INV-G invoke field as function pointer

TABLE A.IV: Vfgadgets used in exemplary Firefox 36.0a1 64-bit exploit (§V-C)

View publication stats

https://www.researchgate.net/publication/283121202

