
Sicurezza Informatica

Introduzione al corso

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Obiettivo del corso

•  Fornire allo studente le conoscenze e gli strumenti
adeguati:
•  per poter comprendere i principali rischi derivanti dall’uso

delle tecnologie dell’informazione indipendentemente dal
campo di applicazione delle stesse

•  E conseguentemente per migliorare il livello di affidabilità dei
sistemi

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Strategia

•  Fornire gli strumenti necessari per poter analizzare le
criticità in termini di sicurezza di alcune importanti
componenti software:
•  Applicazioni scritte in C (ad es. Sistema operativo, web

server, utility di sistema, ecc.)
•  Applicazioni WEB

•  Fornire gli strumenti fondamentali per
•  Effettuare reverse engineering di applicazioni elementari
•  Effettuare l’analisi dell’immagine di memoria di sistemi

(Forensics)

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Metodo

•  Studiare in maniera molto approfondita
•  Alcune importanti tecniche di intrusione sinora individuate

nei diversi ambiti di riferimento
•  Affiancare allo studio teorico l’attività pratica

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Programma

•  Concetti preliminari:
•  Linguaggio Assembler (GAS)
•  Strumenti di Debugging

•  Memory Error Exploits:
•  Smashing the stack
•  Return to Libc
•  Integer Overflow

•  Reverse engineering
•  Introduzione alle Tecniche di Binary Analysis
•  Tecniche di Obfuscation dei Binari
•  Esempi di reverse Engineering

•  Forensic
•  Introduzione alle tecniche di memory forensic
•  Analisi di rootkit in RAM
•  Analisi di un hypervisor in RAM

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Prerequisiti

•  Sistemi operativi
•  Sicurezza delle reti e dei calcolatori
•  Reti di calcolatori
•  Linguaggio C
•  Linux
•  Un portatile con una macchina Linux con installato

binutils

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Esami/testi

•  Esame:

•  2 prove intermedie + laboratorio

•  Testi: materiale in inglese tratto da manuali, riviste e
articoli specializzati, segnalati sul sito web del corso

•  http://security.di.unimi.it

Sicurezza Informatica

Lez. 1
Elementi del linguaggio Assembler e

strumenti di debugging

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Hw di riferimento

•  Non si può parlare di assembler senza introdurre,
almeno in via preliminare, il modello di macchina a
cui il linguaggio stesso si riferisce

•  Nel nostro caso opereremo inizialmente con
un’architettura Intel a 32 bit e successivamente a 64
bit

•  L’ambiente di esecuzione a cui siamo interessati
inizialmente è il seguente

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Registri General Purpose

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Accesso ai registri

•  EAX, EBX, ECX, e EDX sono registri a 32-bit
•  È possibile però accedere a soli 16-bit e 8-bit
•  I 16-bit meno significativi di EAX sono denotati con AX
•  AX è ulteriormente suddiviso

•  AL = 8 bit meno significativi
•  AH = 8 bit più significativi

•  ESI, EDI, EBP, ESP: si può solo accedere ai 16 bit meno
significativi

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

64-bit

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Segment Registers

•  Segment registers hold the segment address of various items.
They can only be set by a general register or special
instructions. Some of them are critical for the good execution of
the program

•  CS : Holds the Code segment in which your program runs. Changing
its value might make the computer hang.

•  DS: Holds the Data segment that your program accesses. Changing
its value might give erronous data.

•  ES,FS,GS: These are extra segment registers available for far
pointer addressing like video memory and such.

•  SS : Holds the Stack segment your program uses. Sometimes has
the same value as DS. Changing its value can give unpredictable
results, mostly data related.

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

A.A. 2015/2016 Sicurezza Informatica © Danilo
Bruschi

Segment Register

•  Visible Part= 16-bit Segment Register
•  CS, SS, DS, ES, FS, e GS

•  Invisible part = Segment Descriptor (64 bits)

Further Registers

•  The EFLAGS (RFLAGS) is a 32/64-bit register used
as a collection of bits representing Boolean values to
store the results of operations and the state of the
processor

•  The EIP (RIP) register contains the address of the
next instruction to be executed if no branching is
done. EIP can only be read through the stack after a
call instruction.

•  Control registers, processor registers which change
or control the general behavior of a CPU (%cr0-%cr4)

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

EFLAGS

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

ASSEMBLY: A PRIMER

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Data Types

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Data Sizes

•  Three main data sizes
•  Byte (b): 1 byte
•  Word (w): 2 bytes
•  Long (l): 4 bytes
•  Quad (q): 8 bytes

•  Separate assembly-language instructions
•  E.g., addb, addw, addl, addq

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Declaring variables
•  .byte

•  Bytes take up one storage location for each number. They are limited to
numbers between 0 and 255.

•  .int
•  Ints (which differ from the int instruction) take up two storage locations for

each number. These are limited to numbers between 0 and 65535.

•  .long
•  Longs take up four storage locations. They can hold numbers between 0

and 4294967295.

•  .quad
•  quads take up eigth storage locations.

•  .ascii
•  The .ascii directive is to enter in characters into memory. Characters each

take up one storage location (they are converted into bytes internally). So, if
you gave the directive .ascii "Hello there\0", the assembler would reserve
12 storage locations (bytes).

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Declaring Data

.section .data # section declaration

msg: .ascii "Introduci il numero:\n" # our dear string

 len = . - msg # lunghezza messaggio
dieci: .long 10
nrochar: .word 0
zero: .byte 0
num: .long 0
num2: .long 0

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Little endian

•  Intel is a little endian architecture
•  Least significant byte of multi-byte entity is stored at

lowest memory address: “Little end goes first”
•  Es.: il dato 0x44332211 viene memorizzato

•  If we display the memory dump of the same number

0x44332211 stored in memory at address 101 in
Little-Endian order, we see something like this:
•  ADDRESS: ---------- MEMORY BYTES ----------

 100: 00 11 22 33 44 00 00 00 00 00 ...

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

00010001 00010010 00110011 01000100

0x1000 0x1001 0x1002 0x1003

Big endian

•  Some other systems use big endian
•  Most significant byte of multi-byte entity is stored at

lowest memory address: “Big end goes first”
•  Es.: data 0x44332211 is stored as

•  If we display the memory dump of the same number

0x44332211 stored in memory at address 101 in
Little-Endian order, we see something like this:
•  ADDRESS: ---------- MEMORY BYTES ----------

 100: 00 44 33 22 11 00 00 00 00 00 ...
A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

01000100 00110011 00010001 00010001

0x1000 0x1001 0x1002 0x1003

GAS Instruction Format

•  General format:
¥   [prefix] opcode operands

•  Prefix used only in String Functions
•  Operands

•  Single operand instruction: opcode src

•  Two operand instruction : opcode src,dest
•  src & dest represent the source and destination operands

respectively

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Loading and Storing Data

•  Data can be stored in:
•  Registers
•  Variables

•  Variables are stored in memory
•  Registers are “special” memory locations directly

accessible by the processor
•  The processor can only manipulate data inside

registers
•  We need instruction to load from and store to memory

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Accessing data

•  Processors have many ways to access data known
as “addressing modes”

•  Register addressing: simply moves data in or out of a

register
•  Example: movl %edx, %ecx

movq %rdx, %rcx

•  Choice of register(s) embedded in the instruction
•  Copy value in register EDX into register ECX

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Immediate Addressing

•  Immediate mode is used to load direct values into
registers. For example, if you wanted to load the
number 12 into %eax, you would simply do the
following:

movl $12, % eax

•  Notice that to indicate immediate mode, we used a
dollar sign in front of the number. If we did not, it
would be direct addressing mode, in which case the
value located at memory location 12 would be loaded
into %eax rather than the number 12 itself

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Direct Addressing

•  Load or store from a particular memory location
•  Memory address is embedded in the instruction
•  Instruction reads from or writes to that address

•  movl 2000, %ecx
•  Four-byte variable located at address 2000
•  Read the four bytes value contained at location 2000
•  Load the value into the ECX register

•  Can use a label for (human) readability
•  E.g., “i” to allow “movl i, %eax”

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Indirect Addressing

•  Load or store from a previously-computed address
•  Register with the address is an operand in the instruction
•  Instruction reads from or writes to that address

•  Example: movl (%eax), %ecx
•  EAX register stores a 32-bit address (e.g., 2000)
•  Read long-word variable stored at that address
•  Load the value into the ECX register

•  Dynamically allocated data referenced by a pointer
•  The “(%eax)” essentially dereferences a pointer

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Base pointer addressing

•  Load or store with an offset from a base address
•  Register storing the base address
•  Fixed offset also embedded in the instruction
•  Instruction computes the address and does access

•  Example: movl 8(%eax), %ecx
•  EAX register stores a 32-bit base address (e.g., 2000)
•  Offset of 8 is added to compute address (e.g., 2008)
•  Read long-word variable stored at that address
•  Load the value into the ECX register

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Indexed Addressing Example

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

int a[20];
…
int i, sum=0;
for (i=0; i<20; i++)

sum += a[i];

movl $0, %eax
movl $0, %ebx

sumloop:
movl a(,%eax,4), %ecx
addl %ecx, %ebx
incl %eax
cmpl $19, %eax
jle sumloop

eax = ??
ebx = ??
ecx = ??

Summary

•  Immediate addressing: data stored in the instruction itself
•  movl $10, %ecx

•  Register addressing: data stored in a register
•  movl %eax, %ecx

•  Direct addressing: address stored in instruction
•  movl foo, %ecx

•  Indirect addressing: address stored in a register
•  movl (%eax), %ecx

•  Base pointer addressing: includes an offset as well
•  movl 4(%eax), %ecx

•  Indexed addressing: instruction contains base address, and
specifies an index register and a multiplier (1, 2, 4, or 8)
•  movl 2000(,%eax,1), %ecx

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Arithmetic Instructions

•  Simple instructions
•  add{b,w,l,q} source, dest dest = source + dest
•  sub{b,w,l,q} source, dest dest = dest – source
•  inc{b,w,l,q} dest dest = dest + 1
•  dec{b,w,l,q} dest dest = dest – 1
•  neg{b,w,l,q} dest dest = ~dest + 1
•  cmp{b,w,l,q} source1, source2 source2 – source

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Mul/Div

•  Multiply
•  mul (unsigned) or imul (signed)

•  (i)mul s,register performs multiplication and stores the
result in the second operand. If the second operand is left out, it
is assumed to be %eax, and the full result is stored in the
double-word %edx:%eax

•  Divide
•  div (unsigned) or idiv (signed)

•  (i)div s divides the contents of the double-word contained
in the combined %edx:%eax registers by the value in the
register or memory location specified. The %eax register
contains the resulting quotient, and the %edx register contains
the resulting remainder

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Bitwise logic instructions

•  Simple instructions
•  and{b,w,l,q} source, dest dest = source & dest
•  or{b,w,l,q} source, dest dest = source | dest
•  xor{b,w,l,q} source, dest dest = source ^ dest
•  not{b,w,l,q} dest dest = ~dest
•  sal{b,w,l,q} source, dest dest = dest << source
•  sar{b,w,l,q} source, dest dest = dest >> source

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Control Flow

•  We obtain contro flow using two instructions:
cmpl $0, %eax
je end_loop

•  The first one is the cmpl instruction which compares
two values, and stores the result of the comparison in
the status register EFLAGS. Notice that the
comparison is to see if the second value is greater
than the first

•  The second one is the flow control instruction JUMP
which says to jump to the end_loop depending on the
values stored in the status register and on the
condition expressed

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Types of Jumps

•  je: Jump if the values were equal
•  jg: Jump if the second value was greater than the first

value
•  jge: Jump if the second value was greater than or

equal to the first value
•  jl: Jump if the second value was less than the first

value
•  jle: Jump if the second value was less than or equal

to the first value
•  jmp:Jump no matter what. This does not need to be

preceeded by a comparison

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

I/O

•  Initially we will use system calls for performing the
basic I/O operations

•  Linux system calls are called in the following way:
•  You put the system call number in %eax (we're dealing with

32-bit registers here, remember)
•  You set up the arguments to the system call in %ebx, %ecx,

etc.
•  You call the relevant interrupt (for Linux, 80h)
•  The result is usually returned in EAX

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Exit Syscall

•  Some example code always helps:
 movl $1,%eax # The exit syscall number

mov $0,%ebx # Have an exit code of 0
int $80h # Interrupt 80h

•  But how do you find out what these system calls are,
and what they do, and what arguments they take?
Firstly, all the syscalls are listed in /usr/include/asm/
unistd.h

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Important Linux Syscalls

%eax Name %ebx %ecx %edx Note
1 exit Return

value
Exits the
program

3 read File
descriptor
(0 for stdin)

Buffer
start

Buffer size Read into
the given
buffer

4 write File
descriptor
(1 for stout)

Buffer
start

Buffer size Writes the
buffer to
the file
descriptor

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

syscall write

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Example
.text # section declaration

we must export the entry point to the ELF linker or
.global _start # loader. They conventionally recognize _start as

entry point. Use ld -e foo to override the default
_start:

write our string to stdout
movl $len,%edx # third argument: message length
movl $msg,%ecx # second argument: pointer to msg
movl $1,%ebx # first argument: file handle (stdout)
movl $4,%eax # system call number (sys_write)
int $0x80 # call kernel and exit

movl $0,%ebx # first argument: exit code
movl $1,%eax # system call number (sys_exit)
int $0x80 # call kernel

.data # section declaration
msg: .ascii "Hello, world!\n"# our dear string

len = . - msg # length of our dear string

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

From .s to executables

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

From assembler to executable

•  In order to be executed by a processor an assembler
program has to be translated in machine language

•  In order to accomplish such a task we need the
following tools:
•  Assembler
•  Linker
•  Loader

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Compiling & Linking

•  To assembly the program type in the command
as name.s -o name.o

•  as is the command which runs the assembler, name.s is the
source file, and –o name.o tells the assemble to put it’s output in
the file name.o which is an object file. An object file is code that
is in the machine’s language, but has not been completely
finalized

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Assembler

•  Reads and Uses Directives
•  Replace Pseudoinstructions
•  Produce Machine Language
•  Creates Object File (.o files)

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Assembler Directives/Pseudo

•  Give directions to assembler, but do not produce
machine instructions, e.g.
¥   .text : Subsequent items put in user text segment
¥   .data : Subsequent items put in user data segment
¥   . globl sym: declares sym global and can be referenced from

other files
¥   . asciiz str : Store the string str in memory and null-

terminate it

•  Pseudo: variations of machine language instructions
introduced for simplifying the programming task
•  pseudo are translated in the corresponding real instruction

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Translating in machine language

•  Many instructions can be assembled independently
•  pushl %edx
•  movl $0, %eax
•  addl %ebx, %ecx

•  But, some make references to other data or code
•  jne skip
•  pushl $msg
•  call printf

•  Need to fill in those references to generate a final
executable binary

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

2 phase assembler

•  Pass1: Assembler traverses assembly program to create a
symbol table
•  Key: label
•  Value: information about label (Label name, which section, what

offset within that section, …)
•  Pass 2: Assembler traverses assembly program again to

create…
•  RODATA section
•  DATA section
•  BSS section
•  TEXT section
•  Relocation record section

•  Each relocation record indicates an area that the linker must patch

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Example
.text # section declaration

we must export the entry point to the ELF linker or
.global _start # loader. They conventionally recognize _start as

entry point. Use ld -e foo to override the default
_start:

write our string to stdout
movl $len,%edx # third argument: message length
movl $msg,%ecx # second argument: pointer to msg
movl $1,%ebx # first argument: file handle (stdout)
movl $4,%eax # system call number (sys_write)
int $0x80 # call kernel and exit

movl $0,%ebx # first argument: exit code
movl $1,%eax # system call number (sys_exit)
int $0x80 # call kernel

.data # section declaration
msg: .ascii "Hello, world!\n"# our dear string

len = . - msg # length of our dear string

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

danilo@muffet:~$ objdump -h hello.o

hello.o: file format elf32-i386

Sections:
Idx Name Size VMA LMA File off
Algn
 0 .text 00000022 00000000 00000000 00000034 2**2
 CONTENTS, ALLOC, LOAD, RELOC, READONLY, CODE
 1 .data 0000000e 00000000 00000000 00000058 2**2
 CONTENTS, ALLOC, LOAD, DATA
 2 .bss 00000000 00000000 00000000 00000068 2**2
 ALLOC

Sections

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

danilo@muffet:~$ objdump -s hello.o

hello.o: file format elf32-i386

Contents of section .text:
 0000 ba0e0000 00b90000 0000bb01 000000b8
 0010 04000000 cd80bb00 000000b8 01000000
 0020 cd80 ..
Contents of section .data:
 0000 48656c6c 6f2c2077 6f726c64 210a Hello, world!.

Contenuto Sezioni

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Linker

•  Symbols have to be relocated
•  In most large programs, you will have several source

files, and you will convert each one into an object file.
•  The linker is the program that is responsible for

putting the object files together and adding
information to it so that the kernel knows how to load
and run it.

•  To link the file, enter the command
ld name.o -o name

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Linker

•  Combines several object (.o) files into a single
executable (AþlinkingAÿ) (when needed)

•  Enable Separate Compilation of files
•  Changes to one file do not require recompilation of whole

program

•  Works in two phases: resolution and relocation

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Linker

•  Step 1: Take text segment from each .o file and put
them together.

•  Step 2: Take data segment from each .o file, put
them together, and concatenate this onto end of text
segments.

•  Step 3: Resolve References
•  Go through Relocation Table and handle each entry
•  That is, fill in all absolute addresses

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Resolving References (1/2)

•  Linker assumes first word of first text segment is at
address 0x00000000.

•  Linker knows:
•  length of each text and data segment
•  ordering of text and data segments

•  Linker calculates:
•  absolute address of each label to be jumped to (internal or

external) and each piece of data being referenced

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Resolving References (2/2)

•  To resolve references:
•  search for reference (data or label) in all symbol tables
•  if not found, search library files (for example, for printf)
•  once absolute address is determined, fill in the machine

code appropriately

•  Output of linker: executable file containing text and
data (plus header) (.elf or PE)

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

danilo@muffet:~$ objdump -h hello

hello: file format elf32-i386

Sections:
Idx Name Size VMA LMA File off Algn
 0 .text 00000022 08048074 08048074 00000074 2**2
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 1 .data 0000000e 08049098 08049098 00000098 2**2
 CONTENTS, ALLOC, LOAD, DATA

Sezioni eseguibile

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Executing

•  You can run the executable prog by typing in the
command

./prog
•  The ./ is used to tell the computer that the program

isn’t in one of the normal program directories, but is
the current directory instead

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Loader I

•  Executable files are stored on disk
•  When one is run, loaderAûs job is to load it into

memory and start it running:
•  Reads executable fileAûs header to determine size of text and

data segments
•  Creates new address space for program large enough to

hold text and data segments, along with a stack segment
•  Copies instructions and data from executable file into the

new address space (this may be anywhere in memory)

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Loader II

•  Copies arguments passed to the program onto the
stack

•  Initializes machine registers
•  Most registers cleared, but stack pointer assigned address of

1st free stack location

•  Jumps to start-up routine that copies programAûs
arguments from stack to registers and sets the PC
•  If main routine returns, start-up routine terminates program

with the exit system call

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Exercise

•  Load, compile and execute the “Hello World!”
program

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Debugging

•  In assembly language, even minor errors usually
have results such as the whole program crashing with
a segmentation fault error

•  Therefore, to aid in determining the source of errors,
you must use a source debugger

•  The debugger we will be looking at is GDB - the GNU
Debugger

•  It can debug programs in multiple programming
languages, including assembly language

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Debugging

•  To run a program under gdb you need to have the
assembler include debugging information in the
executable. All you need to do to enable this is to add
the --gstabs option to the as command. So, you
would assemble it like this:

as --gstabs name.s –o name.o
•  Linking would be the same as normal
•  Now, to run the program under the debugger, you

would type in
gdb name

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

gdb

GNU gdb Red Hat Linux (5.2.1-4)
Copyright 2002 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public
License, and you are welcome to change it and/or
distribute copies of it under certain conditions. Type
"show copying" to see the conditions. There is
absolutely no warranty for GDB. Type "show warranty"
for details.
This GDB was configured as "i386-redhat-linux"...
(gdb)

•  At this point, the program is loaded, but is not running yet. The
debugger is waiting your command. To run your program, just type in
run.

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Some commands

•  A breakpoint is a place in the source code that you
have marked to indicate to the debugger that it
should stop the program when it hits that point

•  To set breakpoints you have to set them up before
you run the program. Before issuing the run
command, you can set up breakpoints using the
break command

•  For example, to break on line 27, issue the command
break 27. Then, when the program crosses line 27, it
will stop running, and print out the current line and
instruction.

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Some commands

•  To follow the flow of a program, keep on entering
stepi (for "step instruction"), which will cause the
computer to execute one instruction at a time

•  To check the contents of register in GDB either use
the command info register or print/ $eax
to print register eax in hexadecimal, or do print/d
$eax to print it in decimal

•  x/nx addr: print the hexadecimal content of n
words starting from memory address addr

•  set {char⁄int} addr = data
•  For other command see the help command

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Exercise

1.  Debug and correct the Hello World program,
2.  Using GDB, modify the EXECUTABLE so that it

prints “Hello, Milan!”

•  Write a program for reading a number from keyboard
and print it out

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

Homework

•  Write an assembly program which reads as input two
positive integer numbers and print the difference
between the first and the second one (you can
assume that the difference will never be negative)

A.A. 2015/2016 Sicurezza Informatica © Danilo Bruschi

