
CyberProbe: Towards Internet-Scale Active Detection of Malicious Servers

a. nappa, z. xu, m.z. rafique, j.caballero, g.gu imdea software institute success lab, texas a&m univeristy

Cybercriminals use geographically distributed servers to run their malicious operations

- Exploit servers -> Malware distribution
- Payment servers -> Monetization
- Redirectors -> Anonymity
- C&C servers -> Control botnets
- P2P bots (server functionality)

Existing detection techniques: Passive

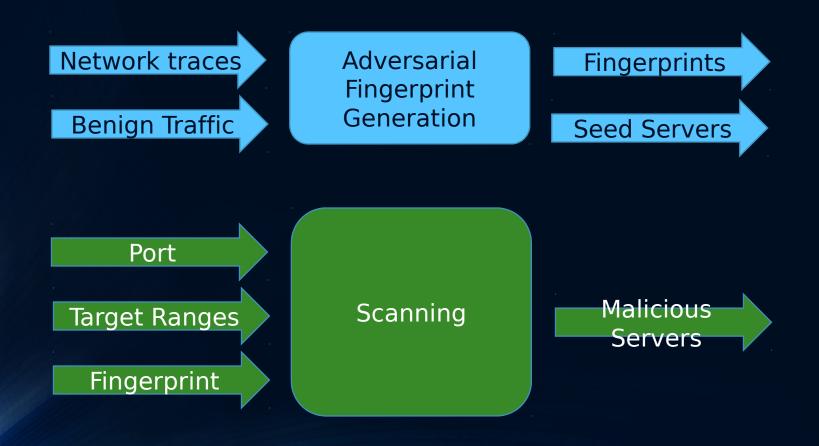
- Honeypots
- Spamtraps

LIMITATIONS

- Slow
- Incomplete (i.e., limited view)

Existing detection techniques: Active

- Run malware samples
- Honeyclient farms (i.e. Google Safebrowsing)


LIMITATIONS

- Expensive
- Incomplete (i.e., Safebrowsing focuses on exploit servers)

Contributions

- Novel active probing approach for Internet-scale detection of malicious servers
- Novel adversarial fingerprint generation technique
- Implement approach into CyberProbe
- Use CyberProbe for 24 localized and Internet-wide scans
 - Identifies 151 malicious servers
 - 75% of the servers unknown to databases of malicious activity (e.g., VirusTotal, UrlQuery)
 - Identifies provider locality property

Cyberprobe in a nutshell

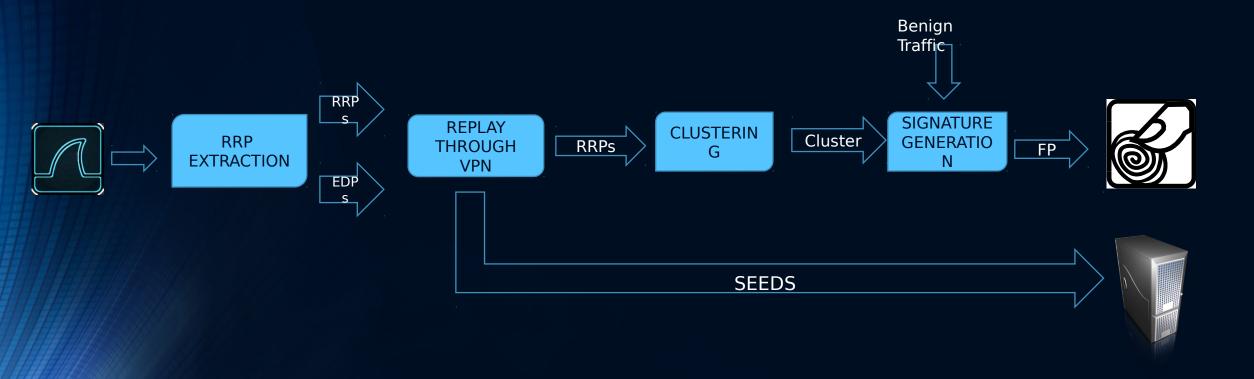
Fingerprints

- A fingerprint for each operation & server type
- A fingerprint comprises:
 - A probe construction function □ Packet

Clickpayz1

Probe: GET /td?aid=e9xmkgg5h6&said=26427

Signature:


content: "302"; http_stat_code;

content: "\r\n\r\nLoading..."

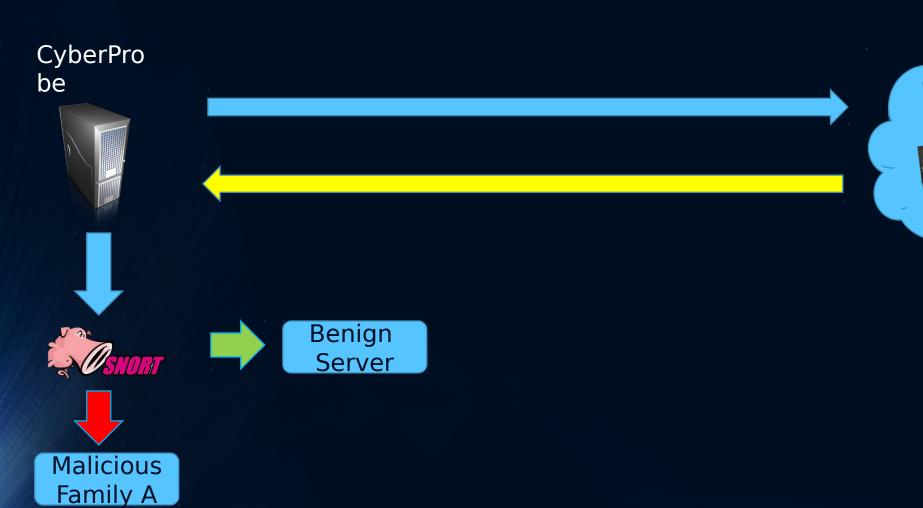
Adversarial Fingerprint Generation: Goals

- Minimize traffic
- Generate inconspicuous probes

Adversarial Fingerprint Generation: Architecture

Generation details

Replay


- VPN for: anonymity, IP diversity and for new states
- Check result against random resource from the server

Compa GET /td? aid=e9xmkgg5h6&said=26427 GET /asdfgh.html

Scanning

- 3 scanners:
 - Horizontal _ SYN scan
 - AppTCP scanner (sends app-level probe)
 - UDP scanner
- 3 scan ranges:
 - Localized-reduced
 - Localized-extended
 - Internet-wide
- Signature matching uses Snort

AppTCP and UDP scanners

INTERNET

Scanning summary

TCP

- TCP horizontal scanner (fast, polite)
- TCP sniffer (reliable to get responses to our probes)
- AppTCP scanner (Asynchronous + Snort)
 UDP
- UDP scanner (fast, polite) + Snort

Ethical Considerations

To scan as politely as possible we:

- Rate-limit scanners
- Set up forward and backward DNS entries for scanners
- Set up a webpage in the scanners to explain our experiment
- Remove from whitelist provider's ranges that request so
- Manually check fingerprints

Adversarial fingerprint generation results

Type	Source	Families	Pcaps	RRPs	RRPs Replaye r	Seeds	Fingerprint s
Malware	VirusSha re	152	918	1,639	193	19	18
Malware	MALICIA	9	1,059	764	602	2	2
Honeyclie nt	MALICIA	6	1,400	42,160	9,497	5	2
Honeyclie nt	UrlQuery	1	4	11	11	1	1

AppTCP Scan Results

- 151 total ser
- Virustota servers
- UrlQuery
- MalwareDo

with the scans out 25% of the

and VxVault 1%

Servers Operations

Operation	Fingerprint s	Seeds	Servers	Prov.	Provider Loc.
bestav	3	4	23	7	3.3
bh2-adobe	1	1	13	7	1.8
bh2-ngen	1	1	2	2	1.0
blackrev	1	1	2	2	1.0
clickpayz	2	2	51	6	8.5
doubleighty	1	1	18	9	2.0
kovter	2	2	9	4	2.2
ironsource	1	1	7	4	1.7
optinstaller	1	1	18	4	2.0
soft196	1	1	8	4	2.0
TOTAL	14	15	151	47	3.2(avg.)

Observations

Provider Locality:

a relationship has been established with a der it is very likely that more than one server will be setup with this provider

P2P bots Scan Results

Typ e	Start- Date	Port	Fingerpr int	Targets	SC	Rate	Time	Found
R	2013-03- 19	UDP/164 71	zeroacce ss	40,448	1	10	1.2h	55 (0.13%)
I	2013-05- 03	UDP/164 71	zeroacce ss	2,6B	4	50,000	3.6h	7,884 (0.0003%)

Related Work

Scanning:

- Leonard et al. IMC '10
- Heninger et al. Usenix Security '12
- Zmap

Fingerprinting:

- FiG
- PeerPress

Signature Generation:

- Honeycomb, Autograph, EarlyBird, Polygraph, Hamsa
- Botzilla, Perdisci et al., Firma

Conclusion

- Novel active probing approach for Internet-scale detection of malicious servers
- Novel adversarial fingerprint generation technique
- Implement approach into CyberProbe
- Use CyberProbe for 24 localized and Internet-wide scans
 - Identifies 151 malicious servers
 - 75% of the servers unknown to databases of malicious activity (e.g., VirusTotal, UrlQuery)
 - Identifies provider locality property

Thanks!

Future Work

- Scanner IP diversity
 - Completeness
- Shared hosting (i.e. CDN)
- Complex protocol semantics