
Buffer overflows

Buffer overflows from 10,000 ft
• Buffer =

• Contiguous memory associated with a variable or field
• Common in C

- All strings are (NUL-terminated) arrays of char’s

• Overflow =
• Put more into the buffer than it can hold

• Where does the overflowing data go?
• Well, now that you are an expert in memory layouts…

Benign outcome
void func(char *arg1)
{
 char buffer[4];
 strcpy(buffer, arg1);
 ...
}

int main()
{
 char *mystr = “AuthMe!”;
 func(mystr);
 ...
}

&arg100 00 00 00

buffer

A u t h

Upon return, sets %ebp to 0x0021654d
M e ! \0

%ebp4d 65 21 00 %eip

SEGFAULT (0x00216551) (during subsequent access)

Security-relevant outcome
void func(char *arg1)
{
 int authenticated = 0;
 char buffer[4];
 strcpy(buffer, arg1);
 if(authenticated) { ...
}

int main()
{
 char *mystr = “AuthMe!”;
 func(mystr);
 ...
}

&arg1%eip%ebp00 00 00 0000 00 00 00

authenticatedbuffer

M e ! \0

4d 65 21 00A u t h

Code still runs; user now ‘authenticated’

Could it be worse?
void func(char *arg1)
{
 char buffer[4];
 strcpy(buffer, arg1);
 ...
}

&mystr%eip%ebp00 00 00 00

buffer

strcpy will let you write as much as you want (til a ‘\0’)

All ours!

What could you write to memory to wreak havoc?

Code
!

Aside: User-supplied strings
• These examples provide their own strings

• In reality strings come from users in myriad aways
• Text input
• Packets
• Environment variables
• File input…

• Validating assumptions about user input is
extremely important

• We will discuss it later, and throughout the course

