
Memory layout

Memory Layout Refresher
• How is program data laid out in memory?

• What does the stack look like?

• What effect does calling (and returning from) a
function have on memory?

• We are focusing on the Linux process model
• Similar to other operating systems

All programs are stored in memory

0

4G 0xffffffff

0x00000000

The process’s view
of memory is that

it owns all of it

In reality, these are
virtual addresses;
the OS/CPU map
them to physical

addresses

The instructions themselves are in memory

Text

0

4G 0xffffffff

0x00000000

0x4bf mov %esp,%ebp

0x4be push %ebp

0x4c1 push %ecx

0x4c2 sub $0x224,%esp

...

...

Location of data areas

Text

0

4G 0xffffffff

0x00000000

cmdline & env

Uninit’d data static int x;

Init’d data static const int y=10;

Runtime

Known at
compile time

Set when 
process starts

Heap malloc(sizeof(long));

Stack
int f() {  
 int x;

 …

Memory allocation
Stack and heap grow in opposite directions

push 1  
push 2  
push 3

Compiler emits instructions
adjust the size of the stack at run-time

Heap

0xffffffff0x00000000

Stack

Stack
pointer

123

return

apportioned by the OS;
managed in-process

by malloc

{

Focusing on the stack for now

Stack and function calls
• What happens when we call a function?

• What data needs to be stored?
• Where does it go?

• What happens when we return from a function?
• What data needs to be restored?
• Where does it come from?

Basic stack layout

0xffffffff

caller’s dataarg3arg2arg1??????loc1loc2…

Arguments  
pushed in 

reverse order
of code

Local variables 
pushed in the
same order as

they appear  
in the code

void func(char *arg1, int arg2, int arg3)
{
 char loc1[4]
 int loc2;
 ...
}

The local variable allocation is ultimately up to the compiler: Variables could be allocated in any order,
or not allocated at all and stored only in registers, depending on the optimization level used.

Stack frame
for func

Accessing variables

0xffffffff

caller’s dataarg3arg2arg1??????loc1loc2…

void func(char *arg1, int arg2, int arg3)
{
 ...
 loc2++;
 ...
}

0xbffff323

Q: Where is (this) loc2?

Can’t know absolute  
address at compile time

But can know the relative address
• loc2 is always 8B before ???s

%ebp

A: -8(%ebp)

Frame pointer

Stack frame
for func

Returning from functions

0xffffffff

caller’s dataarg3arg2arg1??????loc1loc2…

int main()
{
 ...
 func(“Hey”, 10, -3);
 ...
}

%ebp

Q: How do we restore %ebp?

%ebp

%ebp

Push %ebp before locals

Set %ebp to(%ebp) at return

%esp

Set %ebp to current (%esp)

Stack frame
for func

Returning from functions

0xffffffff

caller’s dataarg3arg2arg1???%ebploc1loc2…

int main()
{
 ...
 func(“Hey”, 10, -3);
 ...
}

%ebp

Q: How do we resume here?

%ebp

0x5bf mov %esp,%ebp

0x5be push %ebp
...

...

Instructions in memory

Text

0

4G 0xffffffff

0x00000000

0x49b movl $0x804..,(%esp)

0x493 movl $0xa,0x4(%esp)

0x4a2 call <func>

0x4a7 mov $0x0,%eax

...

...

%eip

Stack frame
for func

Returning from functions

0xffffffff

caller’s dataarg3arg2arg1???%ebploc1loc2…

int main()
{
 ...
 func(“Hey”, 10, -3);
 ...
}

%ebp

Q: How do we resume here?

Push next %eip  
before call

Set %eip to 4(%ebp)
at return

%eip

%ebp

Stack and functions: Summary
Calling function:
1.Push arguments onto the stack (in reverse)
2.Push the return address, i.e., the address of the instruction you
want run after control returns to you

3.Jump to the function’s address

Called function:
4.Push the old frame pointer onto the stack (%ebp)
5.Set frame pointer (%ebp) to where the end of the stack is right now
(%esp)

6.Push local variables onto the stack

Returning function:
7.Reset the previous stack frame: %esp = %ebp, %ebp = (%ebp)
8.Jump back to return address: %eip = 4(%esp)

